
applied
sciences

Article

SLA-Based Adaptation Schemes in Distributed
Stream Processing Engines †

Muhammad Hanif 1, Eunsam Kim 2 , Sumi Helal 3 and Choonhwa Lee 1,*
1 Division of Computer Science and Engineering, Hanyang University, Seoul 133-791, Korea;

honeykhan@hanyang.ac.kr
2 Department of Computer Engineering, Hongik University, Seoul 121-791, Korea; eskim@hongik.ac.kr
3 School of Computing and Communications, Lancaster University, Lancaster, UK; s.helal@lancaster.ac.uk
* Correspondence: lee@hanyang.ac.kr; Tel.: +82-2-2220-1268
† This article is a re-written and extended version of “An Adaptive SLA-Based Data Flow Mechanism for

Stream Processing Engines” presented at ICTC 2017, Jeju Island, South Korea on 18 October 2017.

Received: 20 January 2019; Accepted: 8 March 2019; Published: 13 March 2019
����������
�������

Abstract: With the upswing in the volume of data, information online, and magnanimous cloud
applications, big data analytics becomes mainstream in the research communities in the industry as
well as in the scholarly world. This prompted the emergence and development of real-time distributed
stream processing frameworks, such as Flink, Storm, Spark, and Samza. These frameworks endorse
complex queries on streaming data to be distributed across multiple worker nodes in a cluster. Few
of these stream processing frameworks provides fundamental support for controlling the latency and
throughput of the system as well as the correctness of the results. However, none has the ability to
handle them on the fly at runtime. We present a well-informed and efficient adaptive watermarking
and dynamic buffering timeout mechanism for the distributed streaming frameworks. It is designed
to increase the overall throughput of the system by making the watermarks adaptive towards the
stream of incoming workload, and scale the buffering timeout dynamically for each task tracker
on the fly while maintaining the Service Level Agreement (SLA)-based end-to-end latency of the
system. This work focuses on tuning the parameters of the system (such as window correctness,
buffering timeout, and so on) based on the prediction of incoming workloads and assesses whether
a given workload will breach an SLA using output metrics including latency, throughput, and
correctness of both intermediate and final results. We used Apache Flink as our testbed distributed
processing engine for this work. However, the proposed mechanism can be applied to other streaming
frameworks as well. Our results on the testbed model indicate that the proposed system outperforms
the status quo of stream processing. With the inclusion of learning models like naïve Bayes, multilayer
perceptron (MLP), and sequential minimal optimization (SMO)., the system shows more progress in
terms of keeping the SLA intact as well as quality of service (QoS).

Keywords: big data; distributed computing; modern stream processing engine; SLA; watermarking;
cloud computing

1. Introduction

Contemporary data-intensive applications necessitate the persistent increment in the power of
computing resources and the volume of storage devices which are in many real-life use cases essential
on-demand for a specific operation in data lifecycle such as data collection, extraction, processing,
and reporting. Additionally, it needs to be elastically scaled up and down according to the incoming
workload. Cloud computing [1] delivers platforms and environments for data-intensive applications
and facilitates the effective use of big data technologies and distributed resources [2]. Given the large

Appl. Sci. 2019, 9, 1045; doi:10.3390/app9061045 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9393-4002
https://orcid.org/0000-0002-6564-2392
http://www.mdpi.com/2076-3417/9/6/1045?type=check_update&version=1
http://dx.doi.org/10.3390/app9061045
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 1045 2 of 21

volume of data to be transmitted and processed, each phase of the data-intensive applications is
bringing new challenges to the underlying networking architecture and services.

Distributed batch processing systems like MapReduce [3] and Hadoop [4] still serve an essential
function in the processing of static and historical datasets. However, MapReduce and Hadoop are not
suitable for streaming data applications, because they were designed with the philosophy of offline
batch processing of static data in focus, in which all the input data need to be stored in a distributed
file system in advance. Streaming data processing systems gained significant attention due to the
reason that processing a large volume of data in the batch is often not sufficient in use cases where
new data has to be processed fast to quickly adapt and react to changes, such as intrusion detection,
fraud detection, and Web analytics systems. Ideally, streaming engines must be capable of handling
vast; ever-changing data streams in real-time and of conveying results to potential clients with a
minimum delay. Several steaming engines including Storm [5], Spark [6], Samza [7], Google Data
Flow [8], and Flink [9] have been developed for this very purpose; to support the dynamic analytics
of the streaming datasets. These distributed processing systems handle both the batch and real-time
analytics which represent the core of modern big data applications. These frameworks orchestrate
numerous nodes structured in a cluster and distribute the workload through communication using
different messing techniques.

Flink is an open-source, distributed, dynamic streaming engine, designed to process valid and
limitless data streams in a user-friendly environment [9]. Flink is unique in that it does a lot for stream
processing what Hadoop has done for batch processing [10]. Flink was founded on the belief that the
various functions of data processing applications, such as dynamic stream analytics, continuous data
pipelines, batch processing of historic data, and iterative algorithms, such as machine learning and
graph analysis, can all be performed through utilizing fault-tolerant data streams. Regardless of the
fact that recent streaming engines have solved a majority of the issues plaguing big data analytics [11],
there are still a few difficult hurdles to overcome, namely, window correctness and buffer timeout.
In retrospect, some of the recent streaming engines provide a level of support for the latency and
throughput of the system, and the reliability of the results produced, but none have come close to
providing a quick runtime.

The default Flink framework, as well as other streaming engines, have presented some inventive
challenges for both the academic and industrial communities. Firstly, there’s always either a stagnant
configuration procedure or no established procedure to set the maximum out-of-order capacity for any
incoming window, as well as a fixed technique for the task tracker’s buffering timeout, all of which
are crucial towards the execution of any streaming processing system. Secondly, the majority of these
frameworks are incapable of maintaining the latency of these tasks at runtime, causing all manner of
problems for the performance of many sensitive and critical applications, such as fraud detection in a
banking system, online traffic checking, and so on. Thirdly, default topologies are always mapped
to the nodes, whether the knowledge of the workloads is known or not, creating an overhead and
resulting in a dip in performance, not only at the task at hand but also in the system as a whole. To
rectify these challenges, we propose and extend the idea of our previous work [12] that has the aptitude
of utilizing a variety of different metrics such as late element frequency in the incoming workload, as
well as both currently recorded throughput of the system and the runtime measured latency value
to control the inherent latency problem as quickly and as efficiently as possible. Unlike the default
system, it makes the task tracker’s buffering timeout and max out-of-order-ness dynamic, which can be
changed and maintained according to the Service Level Agreements (SLAs) with the users. We propose
three varying modes: automated, semi-automated, and manual, to successfully maintain the trade-off
between latency and throughput using max-out-of-order-ness and window correctness. In case of
manual mode, the system require the administrator to provide target latency, priority proportion
of throughput and correctness, lower limit of throughput, and lower limit of window correctness
to decide and forward the decision to the streaming environment. Semi-automate mode requires

Appl. Sci. 2019, 9, 1045 3 of 21

the administrator to provide target latency and preferred throughput, while in automated mode the
system only needs target latency as an input.

Following suit from our proposal, Section 2 highlights the aforementioned problem we must
handle, and Section 3 introduces our proposed system. Section 4 explains a detailed use-case scenario,
Section 5 offers a thorough evaluation of our work, Section 6 describes some similar projects, and
Section 7 concludes the paper.

2. Use Case Scenario: Fraud Detection

With the increase of online merchants and e-commerce, fraud becomes a trillion dollar problem
for the global economy with the loss of 3.5 to 4 trillion dollars per year, which makes about 5% of global
GDP [13]. Several fraud detections and prevention companies are working to detect and prevent such
fraud on time including BankCard USA, Kount, Ingenico, and fraud.net.

The system of fraud.net is one of the world’s leading peer production-based fraud prevention
framework which aggregate and analyze large amounts of fraud data from thousands of online
merchant in real time. This collaborative program is the largest merchant-led effort to combat online
payment fraud costing US merchants an estimated amount of 20 billion dollars annually. It protects
more than 2% of all the US-based e-commerce, and its clientele is growing very fast each year recently.
This framework saves up to one million dollars a week for its customers by helping them detect and
prevent fraud.

The primary challenge of such platforms is to build and train a more significant number of
more targeted and precise machine learning models to counter the effect of increasingly different and
evolving forms of fraud. As the fraudster’s strategy changes with time, the system should be able to
evolve itself with the fraud evolution. There might be 100 different fraud schemes and each one with
100 different variations at any given day. To tackle these issues, the platform needs to have machine
learning models and capabilities to identify and handle a new fraud scheme, as it pops up including
its different variations.

Latency-sensitive applications like fraud detection, traffic analysis, and media streaming need to
adapt these capabilities and achieve a better tradeoff between lower latency and higher throughput.
With this the goal of the system, the proposed system has different variations of the algorithm to achieve
a better tradeoff between these, while taking SLA agreement into consideration. A generic fraud
detection and prevention system architecture is shown in Figure 1. The core payment system process
all the transaction and pass it to the main detection and prevention system. The system contains batch
analytics, real-time analytics, predictive analytics, and interactive analytics modules which process the
transactional data and produce alerts based on the analysis of the incoming workload. The alerts are
then portrayed to the dashboard, and the system admin takes actions accordingly.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 3 of 21

Section 5 offers a thorough evaluation of our work, Section 6 describes some similar projects, and
Section 7 concludes the paper.

 2. Use Case Scenario: Fraud Detection

With the increase of online merchants and e-commerce, fraud becomes a trillion dollar problem
for the global economy with the loss of 3.5 to 4 trillion dollars per year, which makes about 5% of global
GDP [13]. Several fraud detections and prevention companies are working to detect and prevent such
fraud on time including BankCard USA, Kount, Ingenico, and fraud.net.

The system of fraud.net is one of the world’s leading peer production-based fraud prevention
framework which aggregate and analyze large amounts of fraud data from thousands of online
merchant in real time. This collaborative program is the largest merchant-led effort to combat online
payment fraud costing US merchants an estimated amount of 20 billion dollars annually. It protects
more than 2% of all the US-based e-commerce, and its clientele is growing very fast each year recently.
This framework saves up to one million dollars a week for its customers by helping them detect and
prevent fraud.

The primary challenge of such platforms is to build and train a more significant number of more
targeted and precise machine learning models to counter the effect of increasingly different and
evolving forms of fraud. As the fraudster’s strategy changes with time, the system should be able to
evolve itself with the fraud evolution. There might be 100 different fraud schemes and each one with
100 different variations at any given day. To tackle these issues, the platform needs to have machine
learning models and capabilities to identify and handle a new fraud scheme, as it pops up including
its different variations.

Latency-sensitive applications like fraud detection, traffic analysis, and media streaming need to
adapt these capabilities and achieve a better tradeoff between lower latency and higher throughput.
With this the goal of the system, the proposed system has different variations of the algorithm to achieve
a better tradeoff between these, while taking SLA agreement into consideration. A generic fraud
detection and prevention system architecture is shown in Figure 1. The core payment system process
all the transaction and pass it to the main detection and prevention system. The system contains batch
analytics, real-time analytics, predictive analytics, and interactive analytics modules which process the
transactional data and produce alerts based on the analysis of the incoming workload. The alerts are
then portrayed to the dashboard, and the system admin takes actions accordingly.

Figure 1. Fraud detection and prevention system based on Amazon and Apache Flink.

3. Problem Definition

3.1. Problem Statement

Big data applications have exploded in popularity and usage over the years, and to complement
this rise, distributed streaming engines like Flink, Samza, and Storm among others, have emerged to
process this massive amount of data in a quick, scalable, and reliable way, through distributing both
finite and infinite data streams in real-time across the worker nodes of a cluster. Flink, in particular,

Figure 1. Fraud detection and prevention system based on Amazon and Apache Flink.

Appl. Sci. 2019, 9, 1045 4 of 21

3. Problem Definition

3.1. Problem Statement

Big data applications have exploded in popularity and usage over the years, and to complement
this rise, distributed streaming engines like Flink, Samza, and Storm among others, have emerged to
process this massive amount of data in a quick, scalable, and reliable way, through distributing both
finite and infinite data streams in real-time across the worker nodes of a cluster. Flink, in particular,
enables the replication of the operators of a job graph, each with their own code and properties, such
as parallelism, across a cluster, decreasing latency and improving both throughput and performance.

Flink code is given, in dataflow form, to the graph builder, which transforms it into a dataflow
graph and passes it on to the client, who communicates with the Job Manager using its actor system, as
seen in Figure 2. The Job Manager is responsible for scheduling and resource management, essentially
keeping track of distributed tasks, scheduling proceeding tasks, and responding to completed or failed
tasks, all whilst coordinating every deployment, including for standalone and YARN clusters. The
dataflow graph is representation of the jobs as combinations of distributed tasks connected to each
other to form a job, and so on, i.e., a job is the combination of tasks to be distributed among available
task tracker within the cluster. During job execution, the Job Manager keeps track of distributed
tasks, decides when to schedule the next task or set of tasks, and reacts to finished or failed tasks.
Job Manager receives a representation of data flow and intermediate results operators (such as joins
after the use of Flat map operator, etc.) in the form of job graph. Each operator has its properties
like parallelism, and the code it executes. The Job Manager transforms the received job graph into an
execution graph according to the parallelism and available resources in the cluster.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 4 of 21

enables the replication of the operators of a job graph, each with their own code and propertie,s such as
parallelism, across a cluster, decreasing latency and improving both throughput and performance.

Flink code is given, in dataflow form, to the graph builder, which transforms it into a dataflow
graph and passes it on to the client, who communicates with the Job Manager using its actor system, as
seen in Figure 2. The Job Manager is responsible for scheduling and resource management, essentially
keeping track of distributed tasks, scheduling proceeding tasks, and responding to completed or failed
tasks, all whilst coordinating every deployment, including for standalone and YARN clusters. The
dataflow graph is representation of the jobs as combinations of distributed tasks connected to each other
to form a job, and so on, i.e., a job is the combination of tasks to be distributed among available task
tracker within the cluster. During job execution, the Job Manager keeps track of distributed tasks,
decides when to schedule the next task or set of tasks, and reacts to finished or failed tasks. Job
Manager receives a representation of data flow and intermediate results operators (such as joins after
the use of Flat map operator, etc.) in the form of job graph. Each operator has its properties like
parallelism, and the code it executes. The Job Manager transforms the received job graph into an
execution graph according to the parallelism and available resources in the cluster.

Figure 2. Apache Flink architecture: Running and dataflow creation of a Flink program on the Flink
system, and distribution of the operators to the available slots on each Task Tracker by the Job Manager
through the Actor system.

All Task Managers have at least one task slot, which primarily runs a pipeline of parallel tasks, or a
group of numerous consecutive tasks (i.e., tasks such as map, reduce, and union), and Flink can execute
these tasks simultaneously [14]. On a cluster with two task managers, each containing three slots,
operators could be distributed amongst the slots, as shown in Figure 3, and are assigned according to the
SLA-based parallelism offered by the system. Seeing as latency and throughput are inversely proportional
to one another, streaming engines require a feature that can provide an equal trade-off between both.

Figure 2. Apache Flink architecture: Running and dataflow creation of a Flink program on the Flink
system, and distribution of the operators to the available slots on each Task Tracker by the Job Manager
through the Actor system.

All Task Managers have at least one task slot, which primarily runs a pipeline of parallel tasks,
or a group of numerous consecutive tasks (i.e., tasks such as map, reduce, and union), and Flink
can execute these tasks simultaneously [14]. On a cluster with two task managers, each containing
three slots, operators could be distributed amongst the slots, as shown in Figure 3, and are assigned
according to the SLA-based parallelism offered by the system. Seeing as latency and throughput are

Appl. Sci. 2019, 9, 1045 5 of 21

inversely proportional to one another, streaming engines require a feature that can provide an equal
trade-off between both.Appl. Sci. 2018, 8, x FOR PEER REVIEW 5 of 21

Figure 3. Distribution of operators in a distributed stream processing framework (adapted from [12]).

3.2. Definition of Terms

3.2.1. Max-Out-Of-Orderness

Max-Out-Of-Orderness defines the maximum amount of time that an element(s) for a particular
window of timestamp “t” is allowed to be late, by at most “n” milliseconds, after the earliest arriving
element of that window, before being ignored in the computation of a final result for said window.
As an example, the maxOutOfOrderness is set to value 6000, meaning that elements are allowed to
be late for a maximum of six seconds while not being ignored in the final results as shown in Figure
4.

Figure 4. Generating watermark based on the maximum out of orderness of six seconds for the data stream.

3.2.2. Buffer Timeout

The buffer timeout is the maximum wait time allocated to the buffers to receive data before its
transfer between machines occurs, even if the buffer was not full, and while benefiting throughput,
it can cause latency issues. An example of this is if the buffer timeout is set to a value of 500 ms in an
attempt to increase the throughput of the system, while that of the default value of it is 100 ms as shown
in Figure 5. This longer timeout results in a potentially slower performance, so to counteract this, there
are two extreme cases where we can maximize throughput at the cost of latency without severely
affecting the system: either by setting the Buffer Timeout value to anywhere close to zero (a value of
zero can cause a severe performance degradation), or by setting it to “−1”, effectively removing the
timeout and simply waiting for the buffers to fill.

Figure 3. Distribution of operators in a distributed stream processing framework (adapted from [12]).

3.2. Definition of Terms

3.2.1. Max-Out-Of-Orderness

Max-Out-Of-Orderness defines the maximum amount of time that an element(s) for a particular
window of timestamp “t” is allowed to be late, by at most “n” milliseconds, after the earliest arriving
element of that window, before being ignored in the computation of a final result for said window. As
an example, the maxOutOfOrderness is set to value 6000, meaning that elements are allowed to be late
for a maximum of six seconds while not being ignored in the final results as shown in Figure 4.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 5 of 21

Figure 3. Distribution of operators in a distributed stream processing framework (adapted from [12]).

3.2. Definition of Terms

3.2.1. Max-Out-Of-Orderness

Max-Out-Of-Orderness defines the maximum amount of time that an element(s) for a particular
window of timestamp “t” is allowed to be late, by at most “n” milliseconds, after the earliest arriving
element of that window, before being ignored in the computation of a final result for said window.
As an example, the maxOutOfOrderness is set to value 6000, meaning that elements are allowed to
be late for a maximum of six seconds while not being ignored in the final results as shown in Figure
4.

Figure 4. Generating watermark based on the maximum out of orderness of six seconds for the data stream.

3.2.2. Buffer Timeout

The buffer timeout is the maximum wait time allocated to the buffers to receive data before its
transfer between machines occurs, even if the buffer was not full, and while benefiting throughput,
it can cause latency issues. An example of this is if the buffer timeout is set to a value of 500 ms in an
attempt to increase the throughput of the system, while that of the default value of it is 100 ms as shown
in Figure 5. This longer timeout results in a potentially slower performance, so to counteract this, there
are two extreme cases where we can maximize throughput at the cost of latency without severely
affecting the system: either by setting the Buffer Timeout value to anywhere close to zero (a value of
zero can cause a severe performance degradation), or by setting it to “−1”, effectively removing the
timeout and simply waiting for the buffers to fill.

Figure 4. Generating watermark based on the maximum out of orderness of six seconds for the
data stream.

3.2.2. Buffer Timeout

The buffer timeout is the maximum wait time allocated to the buffers to receive data before its
transfer between machines occurs, even if the buffer was not full, and while benefiting throughput,
it can cause latency issues. An example of this is if the buffer timeout is set to a value of 500 ms in
an attempt to increase the throughput of the system, while that of the default value of it is 100 ms as
shown in Figure 5. This longer timeout results in a potentially slower performance, so to counteract
this, there are two extreme cases where we can maximize throughput at the cost of latency without
severely affecting the system: either by setting the Buffer Timeout value to anywhere close to zero
(a value of zero can cause a severe performance degradation), or by setting it to “−1”, effectively
removing the timeout and simply waiting for the buffers to fill.

Appl. Sci. 2019, 9, 1045 6 of 21

Appl. Sci. 2018, 8, x FOR PEER REVIEW 6 of 21

Figure 5. Generating the sequence and transferring it between machines using 500 ms as buffer timeout.

3.2.3. Subtask

Programs in Apache Flink (and the others) are inherently distributed and parallel in nature.
Incoming data streams are split into partitions, and operators into operator subtasks that execute
independently from each other, the number of which is determined based on the parallelism of the
operator. An example of this is a streaming dataflow with a condensed and parallelized view of the
source, map and apply methods with parallelism two and sink with parallelism one as shown in
Figure 6. Streams can transport data between two operators in either a forwarding or a redistributing
pattern; forwarding streams preserve the partitioning and order of the elements, while a redistributing
stream changes the partitioning of the streams (as seen below in Figure 6 between map() and
keyBy/window/apply operators).

Figure 6. Subtask concept based on the condensed and parallelized view of the streaming dataflow.

3.2.4. Correctness

One often thinks of correctness in terms of accuracy, which is right in translation, but not entirely
so in the context of the computing world, where correctness is the accuracy of the answers; if an
answer is accurate, but slow to achieve, it is difficult to assume that it is correct.

Flink supports four notions of time for data processing, namely, event time, storage time, ingestion
time and processing time, as shown in Figure 7, which highlights where each of the four is recorded
and used. Event time is as the name suggests, the time where all events on the device occurred,
recorded before the stream enters the system, while storage time is the arrival time of the events into
the message queue. Ingestion time is recorded when events enter the system, and each record gets the
source’s current time as ingestion timestamp at the source operator, while processing time refers to the
current system time of the main machine executing the operations. For example, if an application run
at hourly processing time window, and application begins at 8:25 am, the first hourly processing time
window will only include the events processed between 8:25 am and 9:00 am, and the next window
will include the events processed between 9:00 am and 10:00 am, and so on.

Figure 5. Generating the sequence and transferring it between machines using 500 ms as buffer timeout.

3.2.3. Subtask

Programs in Apache Flink (and the others) are inherently distributed and parallel in nature.
Incoming data streams are split into partitions, and operators into operator subtasks that execute
independently from each other, the number of which is determined based on the parallelism of
the operator. An example of this is a streaming dataflow with a condensed and parallelized view
of the source, map and apply methods with parallelism two and sink with parallelism one as
shown in Figure 6. Streams can transport data between two operators in either a forwarding or
a redistributing pattern; forwarding streams preserve the partitioning and order of the elements, while
a redistributing stream changes the partitioning of the streams (as seen below in Figure 6 between
map() and keyBy/window/apply operators).

Appl. Sci. 2018, 8, x FOR PEER REVIEW 6 of 21

Figure 5. Generating the sequence and transferring it between machines using 500 ms as buffer timeout.

3.2.3. Subtask

Programs in Apache Flink (and the others) are inherently distributed and parallel in nature.
Incoming data streams are split into partitions, and operators into operator subtasks that execute
independently from each other, the number of which is determined based on the parallelism of the
operator. An example of this is a streaming dataflow with a condensed and parallelized view of the
source, map and apply methods with parallelism two and sink with parallelism one as shown in
Figure 6. Streams can transport data between two operators in either a forwarding or a redistributing
pattern; forwarding streams preserve the partitioning and order of the elements, while a redistributing
stream changes the partitioning of the streams (as seen below in Figure 6 between map() and
keyBy/window/apply operators).

Figure 6. Subtask concept based on the condensed and parallelized view of the streaming dataflow.

3.2.4. Correctness

One often thinks of correctness in terms of accuracy, which is right in translation, but not entirely
so in the context of the computing world, where correctness is the accuracy of the answers; if an
answer is accurate, but slow to achieve, it is difficult to assume that it is correct.

Flink supports four notions of time for data processing, namely, event time, storage time, ingestion
time and processing time, as shown in Figure 7, which highlights where each of the four is recorded
and used. Event time is as the name suggests, the time where all events on the device occurred,
recorded before the stream enters the system, while storage time is the arrival time of the events into
the message queue. Ingestion time is recorded when events enter the system, and each record gets the
source’s current time as ingestion timestamp at the source operator, while processing time refers to the
current system time of the main machine executing the operations. For example, if an application run
at hourly processing time window, and application begins at 8:25 am, the first hourly processing time
window will only include the events processed between 8:25 am and 9:00 am, and the next window
will include the events processed between 9:00 am and 10:00 am, and so on.

Figure 6. Subtask concept based on the condensed and parallelized view of the streaming dataflow.

3.2.4. Correctness

One often thinks of correctness in terms of accuracy, which is right in translation, but not entirely
so in the context of the computing world, where correctness is the accuracy of the answers; if an answer
is accurate, but slow to achieve, it is difficult to assume that it is correct.

Flink supports four notions of time for data processing, namely, event time, storage time, ingestion
time and processing time, as shown in Figure 7, which highlights where each of the four is recorded
and used. Event time is as the name suggests, the time where all events on the device occurred,
recorded before the stream enters the system, while storage time is the arrival time of the events into
the message queue. Ingestion time is recorded when events enter the system, and each record gets the
source’s current time as ingestion timestamp at the source operator, while processing time refers to the
current system time of the main machine executing the operations. For example, if an application run
at hourly processing time window, and application begins at 8:25 am, the first hourly processing time

Appl. Sci. 2019, 9, 1045 7 of 21

window will only include the events processed between 8:25 am and 9:00 am, and the next window
will include the events processed between 9:00 am and 10:00 am, and so on.Appl. Sci. 2018, 8, x FOR PEER REVIEW 7 of 21

Figure 7. Different notions of time in a stream processing lifetime.

While modern streaming engines are capable of using event time windows to reflect the occurrence
of events, system elements can be delayed at a moment’s notice, making it difficult to pinpoint the entire
series of events that occur in a specific timestamp; these elements are known as late elements. As a
result, these modern distributed systems have two critical drawbacks, namely, the increased amount of
data buffering and the aforementioned point about late elements. Flink handles these issues through its
use of watermarks, which marks the progress of events throughout the flow of data using timestamps,
giving us a more reliable, hands-on estimate of a window’s completeness. Watermarks tend to use the
available information such as partition ordering within partitions, among others, to produce an accurate
progress estimate, but as seen in Figure 8, this can easily backfire, resulting in the appearance of late
elements and an inaccurate estimation. As in this case, the stream is an out of order stream, and two
late elements occur due to their arrival after the specified watermark accordingly. Late elements can be
defined through a watermark as the elements with the timestamp less than or equal to the current
watermark at the time of their arrival. Window correctness is vital towards meeting a user-defined
SLA like end-to-end latency or throughput for the above reasons.

Figure 8. Late elements detection through the watermarking mechanism.

4. Proposed System

The proposed streaming data processing system is an extended version of our preliminary research
work [12], containing brokering module, workload analyzer, and job manager latency controller.
Whereas the extended work in this article is composed of input gathering module, brokering module,
workload analyzer, a workload prediction module, and job manager’s latency-throughput controller
module as shown in Figure 9. The input gathering module is the data and event entry point to the
system. It collects data from a variety of sources, like sensors, sensor logs, transaction logs, and the like,
which are then passed on to a data broker, such as Kafka or Amazon Kinesis. The data broker backup
the data streams in varieties of ways, offer the streams for consumption by the engine, as well as provide
the stream recovery mechanism. It also has the role to pipeline this newly acquired data stream to the
workload analyzer module. This module uses the incoming workload to analyze and measure the

Figure 7. Different notions of time in a stream processing lifetime.

While modern streaming engines are capable of using event time windows to reflect the occurrence
of events, system elements can be delayed at a moment’s notice, making it difficult to pinpoint the
entire series of events that occur in a specific timestamp; these elements are known as late elements.
As a result, these modern distributed systems have two critical drawbacks, namely, the increased
amount of data buffering and the aforementioned point about late elements. Flink handles these issues
through its use of watermarks, which marks the progress of events throughout the flow of data using
timestamps, giving us a more reliable, hands-on estimate of a window’s completeness. Watermarks
tend to use the available information such as partition ordering within partitions, among others, to
produce an accurate progress estimate, but as seen in Figure 8, this can easily backfire, resulting in the
appearance of late elements and an inaccurate estimation. As in this case, the stream is an out of order
stream, and two late elements occur due to their arrival after the specified watermark accordingly. Late
elements can be defined through a watermark as the elements with the timestamp less than or equal
to the current watermark at the time of their arrival. Window correctness is vital towards meeting a
user-defined SLA like end-to-end latency or throughput for the above reasons.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 7 of 21

Figure 7. Different notions of time in a stream processing lifetime.

While modern streaming engines are capable of using event time windows to reflect the occurrence
of events, system elements can be delayed at a moment’s notice, making it difficult to pinpoint the entire
series of events that occur in a specific timestamp; these elements are known as late elements. As a
result, these modern distributed systems have two critical drawbacks, namely, the increased amount of
data buffering and the aforementioned point about late elements. Flink handles these issues through its
use of watermarks, which marks the progress of events throughout the flow of data using timestamps,
giving us a more reliable, hands-on estimate of a window’s completeness. Watermarks tend to use the
available information such as partition ordering within partitions, among others, to produce an accurate
progress estimate, but as seen in Figure 8, this can easily backfire, resulting in the appearance of late
elements and an inaccurate estimation. As in this case, the stream is an out of order stream, and two
late elements occur due to their arrival after the specified watermark accordingly. Late elements can be
defined through a watermark as the elements with the timestamp less than or equal to the current
watermark at the time of their arrival. Window correctness is vital towards meeting a user-defined
SLA like end-to-end latency or throughput for the above reasons.

Figure 8. Late elements detection through the watermarking mechanism.

4. Proposed System

The proposed streaming data processing system is an extended version of our preliminary research
work [12], containing brokering module, workload analyzer, and job manager latency controller.
Whereas the extended work in this article is composed of input gathering module, brokering module,
workload analyzer, a workload prediction module, and job manager’s latency-throughput controller
module as shown in Figure 9. The input gathering module is the data and event entry point to the
system. It collects data from a variety of sources, like sensors, sensor logs, transaction logs, and the like,
which are then passed on to a data broker, such as Kafka or Amazon Kinesis. The data broker backup
the data streams in varieties of ways, offer the streams for consumption by the engine, as well as provide
the stream recovery mechanism. It also has the role to pipeline this newly acquired data stream to the
workload analyzer module. This module uses the incoming workload to analyze and measure the

Figure 8. Late elements detection through the watermarking mechanism.

4. Proposed System

The proposed streaming data processing system is an extended version of our preliminary research
work [12], containing brokering module, workload analyzer, and job manager latency controller.
Whereas the extended work in this article is composed of input gathering module, brokering module,
workload analyzer, a workload prediction module, and job manager’s latency-throughput controller
module as shown in Figure 9. The input gathering module is the data and event entry point to the
system. It collects data from a variety of sources, like sensors, sensor logs, transaction logs, and the like,
which are then passed on to a data broker, such as Kafka or Amazon Kinesis. The data broker backup

Appl. Sci. 2019, 9, 1045 8 of 21

the data streams in varieties of ways, offer the streams for consumption by the engine, as well as
provide the stream recovery mechanism. It also has the role to pipeline this newly acquired data stream
to the workload analyzer module. This module uses the incoming workload to analyze and measure
the metric values used in the analytic algorithms of the system. It also has the ability to analyze and
correlate streams, create derived streams and states. The workload analyzer then passes the resultant
metrics and calculated information to the workload prediction module and other upstream modules.
The workload prediction module is designed based around machine learning algorithms and previous
research on the subject for any multi-tier architecture system [15,16]. This module gives the system
a sense of the incoming workload to make the Job Manager ready and help keeps the system from
breaching the SLA agreement. The job manager then takes this collective information, along with the
incoming prediction from the previous module and the decision algorithm, to calculate an improved
performance enhancement. The system can then increase or decrease both throughput and latency
accordingly (using any of the target latency modes described in Section IV-D). Once the system reaches
the necessary SLA requirement (if possible), the algorithm will steadily reduce maxOutOfOrderness
and bufferTimeOut, until a status queue between latency and throughput is established. Furthermore,
we have designed an adaptive topology refinement scheme to get the benefit of topological changes
needed to be made by the system at runtime while taking the incoming workload into account, which
is not in the scope of this paper and will be discussed in our upcoming article.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 8 of 21

metric values used in the analytic algorithms of the system. It also has the ability to analyze and
correlate streams, create derived streams and states. The workload analyzer then passes the resultant
metrics and calculated information to the workload prediction module and other upstream modules.
The workload prediction module is designed based around machine learning algorithms and
previous research on the subject for any multi-tier architecture system [15,16]. This module gives the
system a sense of the incoming workload to make the Job Manager ready and help keeps the system
from breaching the SLA agreement. The job manager then takes this collective information, along with
the incoming prediction from the previous module and the decision algorithm, to calculate an improved
performance enhancement. The system can then increase or decrease both throughput and latency
accordingly (using any of the target latency modes described in Section IV-D). Once the system reaches
the necessary SLA requirement (if possible), the algorithm will steadily reduce maxOutOfOrderness
and bufferTimeOut, until a status queue between latency and throughput is established. Furthermore,
we have designed an adaptive topology refinement scheme to get the benefit of topological changes
needed to be made by the system at runtime while taking the incoming workload into account, which
is not in the scope of this paper and will be discussed in our upcoming article.

Figure 9. Proposed system architecture: Event gathering systems collect the data, pipelining it to the
data broker for validation, then passing it onto the workload analyzer, which finally passes the
obtained results onto the Job Manager through workload prediction module (adapted from [12]).

To this end, we propose a complex adaptive system (CAS), an adaptive watermark and buffer
time-out mechanism designed for the efficient optimization of the Flink engine. In the upcoming
section, we will briefly highlight the metrics used for our proposed optimization of Flink, as well as
explain our aimed latency-bound algorithm. Furthermore, we will also elaborate on the concept
surrounding the dynamic buffering timeout and the various target latency techniques we have used
throughout the project.

4.1. Performance Metrics

4.1.1. Late Elements Frequency

Within the window operators, whenever a subtask receives any late elements, the operator will
alert the master, which in this case is the Job Manager, of the arrival of such elements. The master will
then compile the number of late elements of the system, including the recent arrivals, and use them,
later on, to help determine the tradeoff mentioned at the beginning of the section between latency
and throughput.

4.1.2. Throughput

Flink bestows all users with a rich metric API set. Using Operator.numRecordsOut(the number of
accumulated records) at the sink operator to compute the average throughput per second by dividing

Figure 9. Proposed system architecture: Event gathering systems collect the data, pipelining it to
the data broker for validation, then passing it onto the workload analyzer, which finally passes the
obtained results onto the Job Manager through workload prediction module (adapted from [12]).

To this end, we propose a complex adaptive system (CAS), an adaptive watermark and buffer
time-out mechanism designed for the efficient optimization of the Flink engine. In the upcoming
section, we will briefly highlight the metrics used for our proposed optimization of Flink, as well
as explain our aimed latency-bound algorithm. Furthermore, we will also elaborate on the concept
surrounding the dynamic buffering timeout and the various target latency techniques we have used
throughout the project.

4.1. Performance Metrics

4.1.1. Late Elements Frequency

Within the window operators, whenever a subtask receives any late elements, the operator will
alert the master, which in this case is the Job Manager, of the arrival of such elements. The master will
then compile the number of late elements of the system, including the recent arrivals, and use them,
later on, to help determine the tradeoff mentioned at the beginning of the section between latency
and throughput.

Appl. Sci. 2019, 9, 1045 9 of 21

4.1.2. Throughput

Flink bestows all users with a rich metric API set. Using Operator.numRecordsOut(the number of
accumulated records) at the sink operator to compute the average throughput per second by dividing the
result of the numRecordsOut function of Operator class by the time passed in seconds as in Equation (1):

Throughput = Ň/T (1)

where Ň is the result of the Operator.numRecordsOut, while T is the time in seconds.

4.1.3. Latency

It is genuinely challenging to gather the latency in the entire stream as it is a complex metric.
Therefore, it is achieved through sample slicing off some of the records from the incoming stream,
followed by an appropriate estimation. Records sampling is completed as well, to prevent any
potential degradation of performance in the system, and specific records are marked from the source
location, enabling the sink operator to identify them during calculation, as these records are the only
ones required.

Marking can be done randomly (through random selection algorithm), or at specified times
depending on circumstance. This way, the sink operator know the exact records to use in latency
calculations. The Job Manager (master node) calculate the latency through following Equation (2).

Latency = t f inish − tstart (2)

where t f inish is the finish time of the marked sample and tstart is the entering time of the sample record
in the execution pipeline.

4.2. Latency Control Mechanism

Latency control mechanism acts as an addition towards the Job Manager’s ability to find the
suboptimal balance between latency, throughput and window correctness, through considering a
variety of metrics in the process of achieving the objective of minimalizing latency while maximizing
throughput as much as possible. Latency is decreased when the number of out-of-order events that
reach the system also decreases, while throughput increases based on the value of the buffering timeout.
The main concern here was to sub-optimally decide the tradeoff between latency, window correctness
and buffering timeout, to ensure that the system would be able to maintain its functioning without the
breach of SLA agreement. We focus on the tradeoff as an increase of throughput can cause latency to
be a breach of SLA, or it can also hurt window correctness (as correctness is sometimes more about
timely getting the result than only getting the accurate results).

Through using our proposed metric system, as seen in section III-B, the Job Manager now has
an educated estimation of the appearance rate of late elements and a vision of the system as a whole
in real-time. The master then triggers the algorithm in Figure 10 upon the overflow of the user’s
targetLatencyBound.

The algorithm in Figure 10 is self-explanatory, and it controls the latency and throughput of the
cluster on run time. The algorithm first uses the allowed range of maximumOfOrderness to control
latency of the system and confirms whether the maxOutOfOrderness can be reduced or not, which
could result in one of two possible outcomes. The first possible outcome, if the system is using
ascendingTimeStampExtractor or the limitation of the correctness value declared by the user is the same as
maxOutOfOrderness, then the reduction is no longer possible, and this step is then bypassed. The second
outcome happens if the system can reduce maxOutOfOrderness, in which case maxOutOfOrderness will
steadily decline until currentLatency of the system reaches the (targetLatency–currentLatency) * allowed
percentage of hurting correctness. In the event that the system could not decrease maxOutOfOrderness,

Appl. Sci. 2019, 9, 1045 10 of 21

and the impact on correctness is higher than zero in percentage terms, then the user is alerted, and the
process ends.Appl. Sci. 2018, 8, x FOR PEER REVIEW 10 of 21

Figure 10. Dynamic latency control mechanism: Using the expected metrics, this mechanism controls
the system’s latency based on the established SLA agreements.

The algorithm in Figure 10 is self-explanatory, and it controls the latency and throughput of the
cluster on run time. The algorithm first uses the allowed range of maximumOfOrderness to control
latency of the system and confirms whether the maxOutOfOrderness can be reduced or not, which
could result in one of two possible outcomes. The first possible outcome, if the system is using
ascendingTimeStampExtractor or the limitation of the correctness value declared by the user is the same as
maxOutOfOrderness, then the reduction is no longer possible, and this step is then bypassed. The second
outcome happens if the system can reduce maxOutOfOrderness, in which case maxOutOfOrderness will
steadily decline until currentLatency of the system reaches the (targetLatency–currentLatency) * allowed
percentage of hurting correctness. In the event that the system could not decrease maxOutOfOrderness,
and the impact on correctness is higher than zero in percentage terms, then the user is alerted, and
the process ends.

Next, throughput is controlled using bufferTimeout, that is, the throughput of the system is checked
to see if a decline can occur to ensure that the best tradeoff can happen automatically. In case the
bufferTimeout is already zero or currentThroughput of the system reached its lower limit according to the
user configuration, throughput cannot be decreased any further. Thus, it will return from the process.
However, if the percentage of hurting throughput is greater than zero, then the system will notify the
user before returning. When the system is able to reduce the throughput, it will reduce the bufferTimeout

Figure 10. Dynamic latency control mechanism: Using the expected metrics, this mechanism controls
the system’s latency based on the established SLA agreements.

Next, throughput is controlled using bufferTimeout, that is, the throughput of the system is checked
to see if a decline can occur to ensure that the best tradeoff can happen automatically. In case the
bufferTimeout is already zero or currentThroughput of the system reached its lower limit according to
the user configuration, throughput cannot be decreased any further. Thus, it will return from the
process. However, if the percentage of hurting throughput is greater than zero, then the system will
notify the user before returning. When the system is able to reduce the throughput, it will reduce
the bufferTimeout until the current throughput value reaches (targetLatency–current latency) * allowed
percentage of hurting throughput.

4.3. Dynamic maxOutOfOrderness and Task Tracker’s bufferingTimeout

Most frameworks have no capabilities that enable them to select the out-of-order ness of
all incoming events at system runtime, and likewise, these systems often suffer from the static
configuration of the buffering time-out. This absence of such features usually results in the breaching of

Appl. Sci. 2019, 9, 1045 11 of 21

the SLA agreements dealing with the reliable estimation of outcomes, guaranteed throughput (in case
of throughput-intensive applications), some forms of manual end-to-end latency for specific systems
(in case of response time-sensitive applications such as financial fraud detection, security systems etc.),
and so on.

As opposed to the offered Flink framework, we propose an innovative framework model by
making the maxOutOfOrderness and task tracker’s buffering timeout more flexible and dynamic at
runtime, providing the system with a sense of control, and adaptable at runtime to any manually
defined SLAs. The target values of the two are sent to, and maintained in every node, as follows:

4.3.1. Dynamic maxOutOfOrderness

The getCurrentWatermark procedure is used to get the current watermark of the data stream to
keep track of the event and processing time of the system. In every iteration, the getCurrentWatermark()
method in the run() method of the timestamp and watermark generator’s thread is invoked, our
proposed system will call for the master whether the maxOutOfOrderness value was changed or
otherwise and will go through with the selected path using the dynamic latency control mechanism
accordingly. The proposed system uses a custom-based API to handle the runtime alteration of
the out-of-orderness of events in the incoming workload following the procedure and guidelines
of the Latency-Throughput control algorithm. In order to avoid the communication overhead
from messaging, the communication with the master will be periodic or as necessary. If the
maxOutOfOrderness has been altered, the system will change the local variable in the timestamp
and watermark generator thread accordingly.

4.3.2. DYNAMIC bufferingTimeout

The connection manager of every node’s task manager sends a request to the master node about
the buffer timeout value periodically. Should there have been any changes, then the connection
manager will update its local buffer timeout values as needed, while the current ongoing buffer will
contain all previous values before the update, and the system will provide the updated value for any
generated buffers down the line. The recorded task manager’s value for the buffer timeout is the one
changed through custom-based API of the proposed system following the rules and guidelines of the
Latency-Throughput control algorithm as shown in Figure 10 and detailed in Section 4.2.

4.4. Target Latency Modes

We propose the following three modes of operations to achieve the target latency of the system:
fully automated mode, semi-automated mode, and manual mode.

4.4.1. Fully Automated Mode: setTargetLatency(target latency value)

Fully automated mode in the proposed system will automatically provide a sub-optimized ratio
between throughput and window correctness of any given workload based on the target latency
provided by the user. Based on that, the modified module of the Job Manager will decide the tradeoff
between throughput and window correctness, then enforce it at runtime. We utilize a machine learning
algorithm which analyzes different workloads and improves the relations between latency, throughput,
and window correctness while taking the workload into account. The workloads must be normalized,
as the kind of workloads differ.

To elaborate, let us assume we set the target latency of the system to 20 seconds as shown in
Figure 11a. Upon detection that the current latency of the system is overflowed 20 seconds by the
Flink framework, it will find an optimized tradeoff between throughput and window correctness
automatically, all the while factoring the nature of the workload into account.

Appl. Sci. 2019, 9, 1045 12 of 21

Appl. Sci. 2018, 8, x FOR PEER REVIEW 13 of 21

(a)

(b)

(c)

Figure 11. (a) Fully automated mode example: Setting latency to 20 s according to SLA agreement. (b)
Semi-automated mode example: Setting latency to 20 s and prioritizing throughput over latency
according to SLA agreement. (c) Manual mode example: Setting latency to 20 s, ratio of 3:7 between
throughput and window correctness, threshold of throughput to 20 MB, and threshold of window
correctness to 1000 according to the SLA agreement.

In brief, all these operating modes i.e. fully automated mode, semi-automated mode, and
manual mode are the variation of a core API function defined in our extension of the original open
source framework called “setTargetLatency”. This function is called through the execution
environment variable in order for the system to communicate with the system administrator. These
functions allows administrators and users to define their SLAs and communicate it to the system in
a seamless manner.

5. Evaluation

5.1. Workload Analysis

We use the real-life open-source dataset of German credit fraud data provided by Hamburg
University for experimentation [17]. The dataset is chosen due to the reason that no specialized
knowledge is required to understand the addressed application. Several changes were planted into
the German Credit data to be found by the system and be verified if it can be found accordingly. The
dataset contains two classes, as “good” and “bad” credits, and about 20 attributes of each and every
person with a status of an existing checking account, credit history, amount, purpose, employment
information, guarantors, properties, number of credit cards, and so on. For workload analysis
purposes, we use three different classifiers, i.e., a naive Bayes classifier, multilayer perceptron (MLP),
and sequential minimal optimization (SMO).

The naive Bayes classifier is a probabilistic classifier based on applying Bayes theorem [18] with
strong or naïve independence assumptions between features. Numeric estimator precision values are
chosen based on an analysis of the training data. Due to this reason, the classifier is not an updatable
classifier and typically initiated with zero training instances. The updatable version is a naïve Bayes
updatable classifier which uses the default precision of 0.1 for numeric attributes when called with
zero training instances [19]. It is highly scalable, requiring a number of parameters linear in the
number of features in a learning problem. Maximum-likelihood training, in this case, can be done
through evaluating a closed-form expression, which takes linear time, rather than by complex and
expensive iterative approximation as used for many other types of classifiers.

MLP is a class of feedforward artificial neural network, where each MLP consist of at least three
layer nodes: an input layer, a hidden layer, and an output layer. Each node is a neuron, except for the
input nodes and each neuron uses a nonlinear activation function. MLP utilizes backpropagation
supervised learning technique for training [20]. It can distinguish non-linearly separable data due to

Figure 11. (a) Fully automated mode example: Setting latency to 20 s according to SLA agreement.
(b) Semi-automated mode example: Setting latency to 20 s and prioritizing throughput over latency
according to SLA agreement. (c) Manual mode example: Setting latency to 20 s, ratio of 3:7 between
throughput and window correctness, threshold of throughput to 20 MB, and threshold of window
correctness to 1000 according to the SLA agreement.

4.4.2. Semi-Automated Mode: setTargetLatency(target Latency, priority of hurting throughput and
window correctness)

In the semi-automated mode, users will establish the value for the target latency and prioritize
which of the two, throughput or window correctness, must be sacrificed in a higher capacity, while
calculating the sub-optimized solution for the tradeoff between both.

Again, to elaborate, let us assume a user has set the target latency of the system to 20 s and
selected throughput as the defining factor over windowing correctness when one has to be chosen
as shown in Figure 11b. After Flink determines that the current latency overflew 20 s, it will find an
optimized tradeoff between throughput and correctness automatically with the intention of favoring
throughput rather than correctness.

4.4.3. Manual Mode: setTargetLatency(target latency, hurting proportion between throughput and window
correctness, low limit for throughput, low limit for window correctness)

For manual mode, the user will have to supply the required target latency, which affects the ratio
between throughput and window correctness, providing a lower limit for affecting throughput for the
sack of latency, and a lower limit for affecting window correctness, allowing the system to calculate
the tradeoff between both.

To elaborate, suppose a user sets the target latency of the system to 20 s, resulting in a proportion
of 3:7 between throughput and window correctness, low limit of 20 Mbps, and 1000 as the low limit of
window correctness as in Figure 11c. After Flink detects that current latency overflew 20 s, it will hurt
throughput and window correctness according to 3:7 proportion of throughput and correctness, while
taking into account low bound for hurting throughput and the low limit value for hurting window
correctness according to the given arguments. If the system cannot fulfill these conditions, it alerts the
user about the situation.

In brief, all these operating modes i.e. fully automated mode, semi-automated mode, and manual
mode are the variation of a core API function defined in our extension of the original open source
framework called “setTargetLatency”. This function is called through the execution environment
variable in order for the system to communicate with the system administrator. These functions allows
administrators and users to define their SLAs and communicate it to the system in a seamless manner.

Appl. Sci. 2019, 9, 1045 13 of 21

5. Evaluation

5.1. Workload Analysis

We use the real-life open-source dataset of German credit fraud data provided by Hamburg
University for experimentation [17]. The dataset is chosen due to the reason that no specialized
knowledge is required to understand the addressed application. Several changes were planted into the
German Credit data to be found by the system and be verified if it can be found accordingly. The dataset
contains two classes, as “good” and “bad” credits, and about 20 attributes of each and every person
with a status of an existing checking account, credit history, amount, purpose, employment information,
guarantors, properties, number of credit cards, and so on. For workload analysis purposes, we use
three different classifiers, i.e., a naive Bayes classifier, multilayer perceptron (MLP), and sequential
minimal optimization (SMO).

The naive Bayes classifier is a probabilistic classifier based on applying Bayes theorem [18] with
strong or naïve independence assumptions between features. Numeric estimator precision values are
chosen based on an analysis of the training data. Due to this reason, the classifier is not an updatable
classifier and typically initiated with zero training instances. The updatable version is a naïve Bayes
updatable classifier which uses the default precision of 0.1 for numeric attributes when called with zero
training instances [19]. It is highly scalable, requiring a number of parameters linear in the number
of features in a learning problem. Maximum-likelihood training, in this case, can be done through
evaluating a closed-form expression, which takes linear time, rather than by complex and expensive
iterative approximation as used for many other types of classifiers.

MLP is a class of feedforward artificial neural network, where each MLP consist of at least three
layer nodes: an input layer, a hidden layer, and an output layer. Each node is a neuron, except for
the input nodes and each neuron uses a nonlinear activation function. MLP utilizes backpropagation
supervised learning technique for training [20]. It can distinguish non-linearly separable data due to
its multiple layers and non-linear activation. Its network can be built by hand, created by an algorithm,
or both. The network can also be modified and monitored during training time.

SMO is usually used for solving the quadratic programming problems that arise during the
support vector machines training [21]. It can globally replace all the missing values and transforms
nominal attributes into binary ones. It also normalizes all the attributes by default. In order to obtain
proper probability estimates, an option that fits calibration models to the outputs of the support vector
should be selected. The predicted probabilities are coupled using the pairwise coupling method [22].

We analyze the German credit fraud dataset using the above algorithms. The results are shown in
Figure 12. The columns indicate correctly classified instances, incorrectly classified instances, Kappa
statistic, mean absolute error, root mean squared error, relative absolute error, and root relative squared
error accordingly. Naïve Bayes classifies the highest correct number of instances and with the lowest
root relative error and root mean squared error. SMO has the lowest relative absolute error and means
absolute error accordingly. The model building time is summarized in Table 1, showing that Naïve
Bayes algorithm has the ability to model the scenario in the lowest time of the other two algorithms
despite the number of tuples in the dataset. Naïve Bayes has a 5.2 s model building time, SMO has
10.3 s, and multilayer perceptron has a 21.19 s model building time. The resultant analysis of the
workload is transferred to the Job Manager at runtime to be used by the decision process module for
the system later on. We are currently working on the custom adaptor to make it happened and will be
published with our upcoming research work.

Appl. Sci. 2019, 9, 1045 14 of 21

Appl. Sci. 2018, 8, x FOR PEER REVIEW 14 of 21

its multiple layers and non-linear activation. Its network can be built by hand, created by an
algorithm, or both. The network can also be modified and monitored during training time.

SMO is usually used for solving the quadratic programming problems that arise during the support
vector machines training [21]. It can globally replace all the missing values and transforms nominal
attributes into binary ones. It also normalizes all the attributes by default. In order to obtain proper
probability estimates, an option that fits calibration models to the outputs of the support vector
should be selected. The predicted probabilities are coupled using the pairwise coupling method [22].

We analyze the German credit fraud dataset using the above algorithms. The results are shown in
Figure 12. The columns indicate correctly classified instances, incorrectly classified instances, Kappa
statistic, mean absolute error, root mean squared error, relative absolute error, and root relative
squared error accordingly. Naïve Bayes classifies the highest correct number of instances and with
the lowest root relative error and root mean squared error. SMO has the lowest relative absolute error
and means absolute error accordingly. The model building time is summarized in Table 1, showing
that Naïve Bayes algorithm has the ability to model the scenario in the lowest time of the other two
algorithms despite the number of tuples in the dataset. Naïve Bayes has a 5.2 s model building time,
SMO has 10.3 s, and multilayer perceptron has a 21.19 s model building time. The resultant analysis
of the workload is transferred to the Job Manager at runtime to be used by the decision process
module for the system later on. We are currently working on the custom adaptor to make it happened
and will be published with our upcoming research work.

Table 1. Algorithms model building time.

Algorithm Model Building Time (s)
Naïve Bayes 5.3

Multilayer Perceptron 21.9

SMO 10.3

Figure 12. Workload analysis algorithms: Naïve Bayes, multilayer perceptron, and SMO comparisons
based on correctly classified instances, incorrectly classified instances, Kappa statistic, mean absolute
error, root mean squared error, relative absolute error, and root relative squared error.

5.2. System Experimentation

In Table 2, we show our proposed system’s hardware and software configuration. We performed
our experiments using the Amazon EMR (Elastic MapReduce) 5.6.0 with advanced options of
selecting both Apache Flink and Ganglia as the main software to be installed, as well as the pre-
configuration of the cluster formation and setup. We chose three m3.xlarge instances with eight vCPUs,
15 GiB memory, and an 80 GB SSD. Ganglia is primarily purposed to monitor the cluster and performance

Figure 12. Workload analysis algorithms: Naïve Bayes, multilayer perceptron, and SMO comparisons
based on correctly classified instances, incorrectly classified instances, Kappa statistic, mean absolute
error, root mean squared error, relative absolute error, and root relative squared error.

Table 1. Algorithms model building time.

Algorithm Model Building Time (s)

Naïve Bayes 5.3
Multilayer Perceptron 21.9

SMO 10.3

5.2. System Experimentation

In Table 2, we show our proposed system’s hardware and software configuration. We performed
our experiments using the Amazon EMR (Elastic MapReduce) 5.6.0 with advanced options of selecting
both Apache Flink and Ganglia as the main software to be installed, as well as the pre-configuration of
the cluster formation and setup. We chose three m3.xlarge instances with eight vCPUs, 15 GiB memory,
and an 80 GB SSD. Ganglia is primarily purposed to monitor the cluster and performance of each
machine individually. We use the YARN cluster, with default parallelism of 8 as the base cluster for
Flink jobs, to be executed to keep the application master up and running.

Table 2. Cluster configuration (adapted from [12]).

Hardware/Software Configuration

Cluster Amazon EMR cluster version 5.6.0
Nodes M3.xlarge (8 vCPU, 15GB, 80 SSD)

No of Instances 3
Flink Version 1.2.1

Ganglia Version 3.7.2
Storage Services Amazon S3

5.3. Performance Evaluation Experimentation

Firstly, we have found an interesting system effect; with the increase in buffer timeout, both the
throughput and latency start to proportionately increase as well, thus proving that both throughput
and latency are directly proportional to buffering timeout. This fact details that Flink operators first
gather the records in their buffers, before passing them on to the next operator. By specifying the buffer
timeout, we notify Flink’s runtime to empty the buffer after the stated time even if it is not full. A
lower buffer timeout usually means lower latency, although at the expense of throughput as shown in

Appl. Sci. 2019, 9, 1045 15 of 21

Figure 13. For time-sensitive cases like fraud detection in financial applications or IT security, response
time is critical; latencies higher than 30 ms usually lead to late detection of the problem, which defies
the purpose of such applications. The latency boundaries show that both latency and throughput are
inversely proportional to one another. We require a system that analyzes the workload and develops a
potential ideal trade-off of the two.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 15 of 21

of each machine individually. We use the YARN cluster, with default parallelism of 8 as the base
cluster for Flink jobs, to be executed to keep the application master up and running.

Table 2. Cluster configuration (adapted from [12]).

Hardware/Software Configuration
Cluster Amazon EMR cluster version 5.6.0
Nodes M3.xlarge (8 vCPU, 15GB, 80 SSD)

No of Instances 3
Flink Version 1.2.1

Ganglia Version 3.7.2
Storage Services Amazon S3

5.3. Performance Evaluation Experimentation

Firstly, we have found an interesting system effect; with the increase in buffer timeout, both the
throughput and latency start to proportionately increase as well, thus proving that both throughput
and latency are directly proportional to buffering timeout. This fact details that Flink operators first
gather the records in their buffers, before passing them on to the next operator. By specifying the buffer
timeout, we notify Flink’s runtime to empty the buffer after the stated time even if it is not full. A lower
buffer timeout usually means lower latency, although at the expense of throughput as shown in Figure
13. For time-sensitive cases like fraud detection in financial applications or IT security, response time is
critical; latencies higher than 30 ms usually lead to late detection of the problem, which defies the
purpose of such applications. The latency boundaries show that both latency and throughput are
inversely proportional to one another. We require a system that analyzes the workload and develops
a potential ideal trade-off of the two.

Figure 13. Throughput-latency tradeoff using varying task manager’s buffer timeout values (adapted
from [12]).

The second group of tests reveals that window correctness (as with the increase of allowed
lateness, the window correctness increases as well) alter the productivity of the application. This
experiment is also done under the same EMR cluster configuration of three m3.xlarge instances of
Amazon. The setup uses the streaming application to read parallel streams of events form Apache
Kafka [23] and checks the validity of it, like token authentication, service interaction, and login
authentication. We also design to push some false late elements (elements with timestamp t’ <= t) to
prominence the window correctness problem, meaning that it is unrealistic to postulate a time
through which all elements of a definite event timestamp should have happened, leading to late
elements in the data stream to be picked up and process with the original data. We collect and analyze
the average job execution time, with differing values of allowed lateness ranging from 0 to 30 as

Figure 13. Throughput-latency tradeoff using varying task manager’s buffer timeout values (adapted
from [12]).

The second group of tests reveals that window correctness (as with the increase of allowed lateness,
the window correctness increases as well) alter the productivity of the application. This experiment
is also done under the same EMR cluster configuration of three m3.xlarge instances of Amazon. The
setup uses the streaming application to read parallel streams of events form Apache Kafka [23] and
checks the validity of it, like token authentication, service interaction, and login authentication. We
also design to push some false late elements (elements with timestamp t’ <= t) to prominence the
window correctness problem, meaning that it is unrealistic to postulate a time through which all
elements of a definite event timestamp should have happened, leading to late elements in the data
stream to be picked up and process with the original data. We collect and analyze the average job
execution time, with differing values of allowed lateness ranging from 0 to 30 as published in Table 3.
The experiment shows that the window correctness of the results rises at the cost of total job execution
time. Here the increase in the allowed lateness is consistent with the window correctness, i.e., as the
allowed lateness increases, it increases the chances of the window to be correct and more accurate in
its calculations. This is due to the effect that allowed lateness decreases the chances of elements for the
specified window to be late, whereas the increase in the gap for the execution time is a result of an
increased delay, causing the Kafka stream to heighten its queue time, altering the overall capabilities
of our proposed system.

Table 3. Job execution time with the varying value of allowed lateness.

Allowed Lateness (s) Job Execution Time (s)

0 420
5 435

10 467
20 533
30 579

In an effort to emphasize our definition of latency, another set of experiments shows the event
time and processing time latencies under the condition when the system is extremely overloaded. For
this set of experiments, we overloaded the system with high input and disabled the system capability

Appl. Sci. 2019, 9, 1045 16 of 21

to readjust according to the workload to demonstrate the difference between event time latencies and
processing time latencies, as shown in Figure 14. This experiment reveals that the processing time
latency is significantly lower than the event time latency. The reason behind this phenomenon is that
the system creates backpressure due to overloaded incoming workload and lowers the data processing
rate to stabilize the end-to-end system latency. The backpressure problem has been addressed in
our previous work using the optimized scheduling technique for stream processing [24] and will be
discussed in details in our upcoming article. The event time latency keeps increasing as the input data
stream waits in the queues while the system stabilizes the end-to-end latency.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 16 of 21

published in Table 3. The experiment shows that the window correctness of the results rises at the cost
of total job execution time. Here the increase in the allowed lateness is consistent with the window
correctness, i.e., as the allowed lateness increases, it increases the chances of the window to be correct
and more accurate in its calculations. This is due to the effect that allowed lateness decreases the
chances of elements for the specified window to be late, whereas the increase in the gap for the
execution time is a result of an increased delay, causing the Kafka stream to heighten its queue time,
altering the overall capabilities of our proposed system.

Table 3. Job execution time with the varying value of allowed lateness.

Allowed Lateness (s) Job Execution Time (s)
0 420
5 435

10 467
20 533
30 579

In an effort to emphasize our definition of latency, another set of experiments shows the event
time and processing time latencies under the condition when the system is extremely overloaded. For
this set of experiments, we overloaded the system with high input and disabled the system capability
to readjust according to the workload to demonstrate the difference between event time latencies and
processing time latencies, as shown in Figure 14. This experiment reveals that the processing time latency
is significantly lower than the event time latency. The reason behind this phenomenon is that the system
creates backpressure due to overloaded incoming workload and lowers the data processing rate to
stabilize the end-to-end system latency. The backpressure problem has been addressed in our previous
work using the optimized scheduling technique for stream processing [24] and will be discussed in
details in our upcoming article. The event time latency keeps increasing as the input data stream
waits in the queues while the system stabilizes the end-to-end latency.

Figure 14. Event time vs. processing time latencies under conditions where the system is extremely
overloaded with the incoming workload.

Moreover, in this set of experiments, we elaborate the combined effect of our proposed system
by designing an experiment to capture the performance of the system, utilizing a varying number of
bytes of input data as shown in Figure 15. In the event that the volume of input data is less than
expected, both the CASE-Flink and default Flink performance are similar. On the other hand, with
the rise in the amount of data, CAS-Flink outshines the default Flink system without scaling out any
cases to the EMR cluster. The progress of our system is that we have an algorithmic system in place for
the extraction of the latency and throughput metrics within the cluster. At the current moment, there is
no need to modify the Flink framework, and we intend to keep things that way, at least temporarily.
Also, our workload analyzer is in place to be mounted into the system without significant changes
and modification to the core system. We are currently working on the custom adaptor to be used to

Figure 14. Event time vs. processing time latencies under conditions where the system is extremely
overloaded with the incoming workload.

Moreover, in this set of experiments, we elaborate the combined effect of our proposed system
by designing an experiment to capture the performance of the system, utilizing a varying number
of bytes of input data as shown in Figure 15. In the event that the volume of input data is less than
expected, both the CASE-Flink and default Flink performance are similar. On the other hand, with the
rise in the amount of data, CAS-Flink outshines the default Flink system without scaling out any cases
to the EMR cluster. The progress of our system is that we have an algorithmic system in place for the
extraction of the latency and throughput metrics within the cluster. At the current moment, there is
no need to modify the Flink framework, and we intend to keep things that way, at least temporarily.
Also, our workload analyzer is in place to be mounted into the system without significant changes
and modification to the core system. We are currently working on the custom adaptor to be used
to transfer the analysis results and calculated metrics to the Job Manager on the runtime so that the
system would be able to make its decision module automatize based on the metrics received on the
fly. We considered another set of experimentation with other major streaming engines like Spark,
Storm, and Heron whose comparison is already done in several previous articles, including Spark vs.
Flink vs. Storm [25], benchmarking streaming computation engines [26], and side-by-side comparison
of streaming engines in [27]. If is for these reasons we design other experimentation instead of just
comparing different streaming engines which have been previously handled by many researchers in
the research community.

Moreover, in this set of experiments, we manually transfer the workload analysis results to the
decision module to make the system more automated. The resultant behavior of the system is shown
in Figure 16. It is clear from the figure that the default system has the highest latency in each case
following by SMO based CAS-Flink, MLP based CAS-Flink, and naïve Bayes CAS-Flink with the
minimum latency. The naïve Bayes-based CAS-Flink system is more promising and shows that with
the increase in the incoming streaming data, the system is able to sub-optimally decrease the execution
time of the application without the breach in the SLA agreement as well as without any adverse
effect on the quality of service (QoS). The results shows that all the workload analysis based systems
outperform the default system, this effect is due to the fact that with the overloading, the default
system stabilizes its latency at higher value leading to the effect of the incoming stream of data to wait
in the queues longer and causes SLA breach or reduction in QoS.

Appl. Sci. 2019, 9, 1045 17 of 21

Appl. Sci. 2018, 8, x FOR PEER REVIEW 17 of 21

transfer the analysis results and calculated metrics to the Job Manager on the runtime so that the
system would be able to make its decision module automatize based on the metrics received on the fly.
We considered another set of experimentation with other major streaming engines like Spark, Storm,
and Heron whose comparison is already done in several previous articles, including Spark vs. Flink vs.
Storm [25], benchmarking streaming computation engines [26], and side-by-side comparison of
streaming engines in [27]. If is for these reasons we design other experimentation instead of just
comparing different streaming engines which have been previously handled by many researchers in
the research community.

Figure 15. Flink vs. CAS-Flink: The measured performance of Flink vs. CAS-Flink, utilizing a varying
volume of input datasets (adapted from [12]).

Moreover, in this set of experiments, we manually transfer the workload analysis results to the
decision module to make the system more automated. The resultant behavior of the system is shown
in Figure 16. It is clear from the figure that the default system has the highest latency in each case
following by SMO based CAS-Flink, MLP based CAS-Flink, and naïve Bayes CAS-Flink with the
minimum latency. The naïve Bayes-based CAS-Flink system is more promising and shows that with the
increase in the incoming streaming data, the system is able to sub-optimally decrease the execution time
of the application without the breach in the SLA agreement as well as without any adverse effect on the
quality of service (QoS). The results shows that all the workload analysis based systems outperform the
default system, this effect is due to the fact that with the overloading, the default system stabilizes its
latency at higher value leading to the effect of the incoming stream of data to wait in the queues
longer and causes SLA breach or reduction in QoS.

Figure 16. Application level performance evaluation of the system based on different workload
analysis modules.

Figure 15. Flink vs. CAS-Flink: The measured performance of Flink vs. CAS-Flink, utilizing a varying
volume of input datasets (adapted from [12]).

Appl. Sci. 2018, 8, x FOR PEER REVIEW 17 of 21

transfer the analysis results and calculated metrics to the Job Manager on the runtime so that the
system would be able to make its decision module automatize based on the metrics received on the fly.
We considered another set of experimentation with other major streaming engines like Spark, Storm,
and Heron whose comparison is already done in several previous articles, including Spark vs. Flink vs.
Storm [25], benchmarking streaming computation engines [26], and side-by-side comparison of
streaming engines in [27]. If is for these reasons we design other experimentation instead of just
comparing different streaming engines which have been previously handled by many researchers in
the research community.

Figure 15. Flink vs. CAS-Flink: The measured performance of Flink vs. CAS-Flink, utilizing a varying
volume of input datasets (adapted from [12]).

Moreover, in this set of experiments, we manually transfer the workload analysis results to the
decision module to make the system more automated. The resultant behavior of the system is shown
in Figure 16. It is clear from the figure that the default system has the highest latency in each case
following by SMO based CAS-Flink, MLP based CAS-Flink, and naïve Bayes CAS-Flink with the
minimum latency. The naïve Bayes-based CAS-Flink system is more promising and shows that with the
increase in the incoming streaming data, the system is able to sub-optimally decrease the execution time
of the application without the breach in the SLA agreement as well as without any adverse effect on the
quality of service (QoS). The results shows that all the workload analysis based systems outperform the
default system, this effect is due to the fact that with the overloading, the default system stabilizes its
latency at higher value leading to the effect of the incoming stream of data to wait in the queues
longer and causes SLA breach or reduction in QoS.

Figure 16. Application level performance evaluation of the system based on different workload
analysis modules.
Figure 16. Application level performance evaluation of the system based on different workload
analysis modules.

6. Related Research

The increasing relevance of streaming engines has resulted in a number of projects focused on
exploiting parallelism in stream processing and scale-out. Apache S4 [28], Strom [5], and Flink [9]
represent queries and programs as directed acyclic graphs (DAGs) with parallel operators. S4 schedules
parallel instances of operators at the cost of being able to control such operators. Storm allows users to
stipulate a parallelization level and supports stream partitioning based on key intervals, but it ignores
states of operators and has minimal ability to scale at runtime. System S [29] from IBM supports
intra-query parallelism through a fine-grained subscription model that has the ability to describe
any and all stream connections. This system has no automated manager for the said mechanism.
Hizrel [30] proposed a MatchRegex operator for System S to detect tuple pattern in parallel. This
approach does not consider dynamic repartitioning and state is specific to automata-based pattern
detection. Stromy [31] uses consistent hashing and a logical ring to accommodate new nodes upon scale
out. It does not take congestion into account, while our proposed system does. Zeitler and Risch [32]
proposed the parasplit operator for a partitioning stream statically based on a cost model, allowing for a
customized stream splitting for the scalable execution of continuous queries over massive data streams.
Instead, our take on this decides the parallelization level at runtime, based on performance metrics.

StreamCloud [33] constructs elasticity into Borealis Stream Processing Engine [34]. StreamCloud
uses a query compiler to synthesize high-level queries into graphs of relational algebra operators.
It uses hash-based parallelization, which is geared towards the semantics of joins and aggregates.

Appl. Sci. 2019, 9, 1045 18 of 21

It modifies the parallelism level through splitting queries into subqueries and uses rebalancing to
adjust resource usage. Our proposed approach CASE-Flink reconfigures the out-of-orderness in the
input events occurrences and buffering timeout while complying with user-defined SLA agreement.
Backman et al. [35] partition and distribute operators across nodes within the stream processing
system to reduce the amount of processing latency through load balancing according to the simulated
estimation of latency. They achieve latency-minimization goals through parallelism model encouraged
by latency-oriented operator scheduling policy coupled with the diversification of computing node
responsibilities. In contrast, our method of the operator over the cluster nodes is done when needed to
remove the processing bottlenecks and achieve low latency.

SEEP [36] proposed an elastic approach based on operators state management. It exposes internal
operator state explicitly to the stream processing system through a set of state management primitives.
Based on these primitives, it describes an integrated approach to dynamically scale and recover stateful
operators through periodic checkpointing of externalized operator state by streaming processing
systems and backed up to upstream VMs. It offers mechanisms to backup, restores, and partition
operator’s states in order to achieve short recovery time. Auto-parallelization [37] addresses the
profitability problem associated with automatic parallelization of general purpose distributed data
stream processing applications. Their proposed solution can dynamically adjust the numbers of
channels used to achieve high throughput and high resource utilization as well as handle partitioned
stateful operators through run-time state migration. In contrast, our approach takes workload into
account and adjusts the configuration of anticipated metrics at runtime to meet the SLA requirements.

Twitter’s Heron [38] improves Strom’s congestion handling mechanism by using back pressure.
However, it fails to address the elasticity and reconfiguration of topologies specifically. Heinze et al. [39]
proposed an online parameter optimization approach allowing the system to trade a monetary cost in
exchange for the offered QoS. It focused on latency and policy, rather than throughput and mechanism.
Reactive-Scaling [40] presents a flexible elastic strategy for enforcing constraints over latencies in
a scalable streaming engine while minimizing resource footprints. Their queuing theoretic latency
model provides a latency guarantee by tuning the task-wise level of parallelism in a fixed size cluster.
It should be pointed out that our proposed mechanisms can be used as a black box within both
systems [39,40].

7. Concluding Remarks and Future Directions

The growing popularity of the Flink framework is due to the wide range of use cases for this
platform and its capability to handle both batch and streaming applications and data in a fault-tolerant
and efficient way. As an evolving open source framework in the field of big data analytics and
distributed computing, Apache Flink has the competency of processing distributed data streams
in a reliable and real-time fashion. We proposed an efficient, adaptive watermarking and dynamic
buffering timeout mechanism for Apache Flink. It is designed to increase the overall throughput
by making the watermarks of the system adaptive based on the workload, while also providing a
dynamically updated buffering timeout for every task tracker instantly, all the while maintaining the
SLA based end-to-end latency of the system. The main focus of this work is on tuning the parameters
of the system based on the incoming workloads and assesses whether a given workload will breach an
SLA using output metrics including latency, throughput, and window correctness. Our experimental
results show that CAS-Flink outperforms existing distributed stream processing engines.

We plan to investigate more efficient workload analysis methods like Markov Model, and Markov
Hidden Model. We believe by introducing such models, and we will be able to fully automatize the
system with the inclusion of topology refining scheme to the current model, which will lead the system
to be more robust and load balanced within the limits of its SLA agreements and without hurting the
QoS accordingly.

Appl. Sci. 2019, 9, 1045 19 of 21

Author Contributions: M.H. and C.L. conceived the proposed adaptation scheme for distributed stream
processing; M.H. and E.K. implemented the proof-of-concept system and performed the validation tests; M.H.,
S.H., and C.L. analyzed the performance data and wrote the paper.

Acknowledgments: This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (no. 2017R1A2B4010395).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mell, P.; Grance, T. The NIST Definition of Cloud Computing; National Institute of Standards & Technology:
Gaithersburg, MD, USA, 2011; Volume 145, p. 7.

2. Demchenko, Y.; De Laat, C.; Membrey, P. Defining Architecture Components of the Big Data Ecosystem.
In Proceedings of the 2014 International Conference on Collaboration Technologies and Systems (CTS),
Minneapolis, MN, USA, 19–23 May 2014; pp. 104–112. [CrossRef]

3. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. ACM Commun. 2008, 51,
107–113. [CrossRef]

4. White, T. Hadoop: The Definitive Guide, 3rd ed.; O’Reilly Media: Sebastopol, CA, USA, 2012; Volume 54, ISBN
978-1-4493-1152-0.

5. Toshniwal, A.; Taneja, S.; Shukla, A.; Ramasamy, K.; Patel, J.M.; Kulkarni, S.; Jackson, J.; Gade, K.; Fu, M.;
Donham, J.; et al. Storm @ Twitter. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, Snowbird, UT, USA, 22–27 June 2014; pp. 147–156. [CrossRef]

6. Zaharia, M.; Das, T.; Li, H.; Hunter, T.; Shenker, S.; Stoica, I. Discretized Streams: Fault-Tolerant Streaming
Computation at Scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, Farminton, PA, USA, 3–6 November 2013; pp. 423–438. [CrossRef]

7. Feng, T.; Zhuang, Z.; Pan, Y.; Ramachandra, H. A Memory Capacity Model for High Performing Data-filtering
Applications in Samza Framework. In Proceedings of the 2015 IEEE International Conference on Big Data,
Santa Clara, CA, USA, 29 October–1 November 2015; pp. 2600–2605. [CrossRef]

8. Akidau, T.; Bradshaw, R.; Chambers, C.; Chernyak, S.; Fern, R.J.; Lax, R.; Mcveety, S.; Mills, D.; Perry, F.;
Schmidt, E.; et al. The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and
Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing. In Proceedings of the 41st International
Conference on Very Large Data Bases, Kohala Coast, HI, USA, 31 August–4 September 2015; pp. 1792–1803.
[CrossRef]

9. Carbone, P.; Ewen, S. Apache Flink TM: Stream and Batch Processing in a Single Engine. In Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering; IEEE Computer Society: Washington, DC,
USA, 2015; pp. 28–38.

10. Apache! ApacheTM Hadoop®! Available online: http://hadoop.apache.org/ (accessed on 31 December
2015).

11. Hummer, W.; Satzger, B.; Dustdar, S. Elastic stream processing in the cloud. Wiley Interdiscip. Rev. Data Min.
Knowl. Discov. 2013, 3, 333–345. [CrossRef]

12. Hanif, M.; Yoon, H.; Jang, S.; Lee, C. An adaptive SLA-based data flow mechanism for stream processing
engines. In Proceedings of the International Conference on Information and Communication Technology
Convergence (ICTC), Jeju Island, Korea, 18–20 October 2017; pp. 81–86. [CrossRef]

13. Gee, S. Fraud and Fraud Detection: A Data Analytics Approach; John Wiley & Sons: New York, NY, USA, 2014;
355p.

14. Flink!, Job Scehudling Internals: Flink. Available online: https://ci.apache.org/projects/flink/flink-docs-
release-1.3/internals/job_scheduling.html (accessed on 25 October 2018).

15. Miguel-alonso, T.L.J.; Lozano, J.A. A Review of Auto-scaling Techniques for Elastic Applications in Cloud
Environments. J. Grid Comput. 2014, 12, 559–592. [CrossRef]

16. Calheiros, R.N.; Masoumi, E.; Ranjan, R.; Buyya, R. Workload Prediction Using ARIMA Model and Its
Impact on Cloud Applications ’ QoS. IEEE Trans. Cloud Comput. 2015, 3, 449–458. [CrossRef]

17. Merz, C.J.; Murphy, P. Uci Repository of Machine Learning Databases. 1988. Available online: http:
//www.cs.uci.edu/mlearn/MLRepository.html (accessed on 12 December 2018).

18. Schulman, P. Bayes’ theorem—A review. Cardiol. Clin. 1984, 2, 319–328. [CrossRef]

http://dx.doi.org/10.1109/CTS.2014.6867550
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/2588555.2595641
http://dx.doi.org/10.1145/2517349.2522737
http://dx.doi.org/10.1109/BigData.2015.7364058
http://dx.doi.org/10.14778/2824032.2824076
http://hadoop.apache.org/
http://dx.doi.org/10.1002/widm.1100
http://dx.doi.org/10.1109/ICTC.2017.8190947
https://ci.apache.org/projects/flink/flink-docs-release-1.3/internals/job_scheduling.html
https://ci.apache.org/projects/flink/flink-docs-release-1.3/internals/job_scheduling.html
http://dx.doi.org/10.1007/s10723-014-9314-7
http://dx.doi.org/10.1109/TCC.2014.2350475
http://www.cs.uci.edu/mlearn/MLRepository.html
http://www.cs.uci.edu/mlearn/MLRepository.html
http://dx.doi.org/10.1016/S0733-8651(18)30726-4

Appl. Sci. 2019, 9, 1045 20 of 21

19. John, G.H.; Langley, P. Estimating Continuous Distribution in Bayesian Classifiers. In Proceedings of the
UAI’95 Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, 18–20 August
1995; pp. 338–345.

20. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation.
In Readings in Cognitive Science: A Perspective from Psychology and Artificial Intelligence; Elsevier: Amsterdam,
The Netherlands, 2013; pp. 399–421. ISBN 1558600132.

21. Platt, J.C. Sequential minimal optimization: A fast algorithm for training support vector machines. Adv. Kernel
Methods Support Vector Learn. 1998, 208, 1–21.

22. Quost, B.; Destercke, S. Classification by pairwise coupling of imprecise probabilities. Pattern Recognit. 2017.
[CrossRef]

23. Wang, G.; Koshy, J.; Subramanian, S.; Paramasivam, K.; Zadeh, M.; Narkhede, N.; Rao, J.; Kreps, J.; Stein, J.
Building a Replicated Logging System with Apache Kafka. In Proceedings of the VLDB Endowment, Kohala
Coast, HI, USA, 31 August 2015; pp. 1654–1655. [CrossRef]

24. Yoon, H.; Lee, C. Optimized Stream Processing Task Scheduling in Flink. In Proceedings of the Korea
Computer Congress, Jeju, Korea, 18–20 June 2017.

25. Evans, B. Spark VS flink VS Storm. YAHOO! Eng. 2015. Available online: https://www.mendeley.com/
catalogue/spark-vs-flink-vs-storm/ (accessed on 12 March 2019).

26. Chintapalli, S.; Dagit, D.; Evans, B.; Farivar, R.; Graves, T.; Holderbaugh, M.; Liu, Z.; Nusbaum, K.;
Patil, K.; Peng, B.J.; et al. Benchmarking streaming computation engines: Storm, flink and spark streaming.
In Proceedings of the 2016 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), Chicago, IL, USA, 23–26 May 2016; pp. 1789–1792.

27. Huynh, X. Storm vs. Spark Streaming: Side-by-side comparison. Xinh Tech. 2014. Available online:
https://www.mendeley.com/catalogue/storm-vs-spark-streaming-sidebyside-comparison/ (accessed on
12 March 2019).

28. Neumeyer, L.; Robbins, B.; Nair, A.; Kesari, A. S4: Distributed stream computing platform. In Proceedings
of the IEEE International Conference on Data Mining, ICDM, Sydney, NSW, Australia, 13 December 2010;
pp. 170–177. [CrossRef]

29. Amini, L.; Andrade, H.; Bhagwan, R.; Eskesen, F.; King, R.; Selo, P.; Park, Y.; Venkatramani, C. SPC: A
Distributed, Scalable Platform for Data Mining. In Proceedings of the 4th International Workshop on Data
Mining Standards, Services and Platforms, Philadelphia, PA, USA, 20 August 2006; pp. 27–37. [CrossRef]

30. Hirzel, M. Partition and Compose: Parallel Complex Event Processing. In Proceedings of the International
Conference on DEBS, Berling, Germany, 16–20 July 2012; pp. 191–200. [CrossRef]

31. Loesing, S.; Hentschel, M.; Kraska, T.; Kossmann, D. Stormy: An elastic and highly available streaming
service in the cloud. In Proceedings of the 2012 Jt. EDBT/ICDT Work. EDBT-ICDT ’12, Berlin, Germany,
30 March 2012; pp. 55–60. [CrossRef]

32. Zeitler, E.; Risch, T. Massive scale-out of expensive continuous queries. In Proceedings of the 36th
International Conference on VLDB Endow, Singapore, 13–17 September 2011.

33. Gulisano, V.; Jiménez-Peris, R.; Patiño-Martinez, M.; Soriente, C.; Valduriez, P. StreamCloud: An elastic and
scalable data streaming system. IEEE Trans. Parallel Distrib. Syst. 2012, 2351–2365. [CrossRef]

34. Abadi, D.J.; Ahmad, Y.; Balazinska, M.; Çetintemel, U.; Cherniack, M.; Hwang, J.-H.; Lindner, W.; Maskey, A.;
Rasin, A.; Ryvkina, E.; et al. The Aurora and Borealis Stream Processing Engines. In Data Stream Management;
Springer: Berlin/Heidelberg, Geramny, 2016; pp. 337–359.

35. Backman, N.; Fonseca, R.; Çetintemel, U. Managing parallelism for stream processing in the cloud. In
Proceedings of the 1st International Workshop on Hot Topics in Cloud Data Processing, Bern, Switzerland,
10 April 2012; pp. 1–5. [CrossRef]

36. Fernandez, R.C. Integrating scale out and fault tolerance in stream processing using operator state
management. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data, New York, NY, USA, 23–28 June 2013; pp. 1447–1463. [CrossRef]

37. Gedik, B.; Schneider, S.; Hirzel, M.; Wu, K.L. Elastic scaling for data stream processing. IEEE Trans. Parallel
Distrib. Syst. 2014, 25, 449–458. [CrossRef]

http://dx.doi.org/10.1016/j.patcog.2017.10.019
http://dx.doi.org/10.14778/2824032.2824063
https://www.mendeley.com/catalogue/spark-vs-flink-vs-storm/
https://www.mendeley.com/catalogue/spark-vs-flink-vs-storm/
https://www.mendeley.com/catalogue/storm-vs-spark-streaming-sidebyside-comparison/
http://dx.doi.org/10.1109/ICDMW.2010.172
http://dx.doi.org/10.1145/1289612.1289615
http://dx.doi.org/10.1145/2335484.2335506
http://dx.doi.org/10.1145/2320765.2320789
http://dx.doi.org/10.1109/TPDS.2012.24
http://dx.doi.org/10.1145/2169090.2169091
http://dx.doi.org/10.1145/2463676.2465282
http://dx.doi.org/10.1109/TPDS.2013.295

Appl. Sci. 2019, 9, 1045 21 of 21

38. Kulkarni, S.; Bhagat, N.; Fu, M.; Kedigehalli, V.; Kellogg, C.; Mittal, S.; Patel, J.M.; Ramasamy, K.; Taneja, S.
Twitter Heron: Stream Processing at Scale. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, 31 May–4 June 2015; pp. 239–250.
[CrossRef]

39. Heinze, T.; Roediger, L.; Meister, A.; Ji, Y.; Jerzak, Z.; Fetzer, C. Online Parameter Optimization for Elastic
Data Stream Processing. In Proceedings of the Sixth ACM Symposium on Cloud Computing, Kohala Coast,
HI, USA, 27–29 August 2015; pp. 276–287. [CrossRef]

40. Lohrmann, B.; Janacik, P.; Kao, O. Elastic Stream Processing with Latency Guarantees. In Proceedings of the
International Conference on Distributed Computing Systems, Columbus, OH, USA, 29 June–2 July 2015;
pp. 399–410. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2723372.2742788
http://dx.doi.org/10.1145/2806777.2806847
http://dx.doi.org/10.1109/ICDCS.2015.48
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Use Case Scenario: Fraud Detection
	Problem Definition
	Problem Statement
	Definition of Terms
	Max-Out-Of-Orderness
	Buffer Timeout
	Subtask
	Correctness

	Proposed System
	Performance Metrics
	Late Elements Frequency
	Throughput
	Latency

	Latency Control Mechanism
	Dynamic maxOutOfOrderness and Task Tracker’s bufferingTimeout
	Dynamic maxOutOfOrderness
	DYNAMIC bufferingTimeout

	Target Latency Modes
	Fully Automated Mode: setTargetLatency(target latency value)
	Semi-Automated Mode: setTargetLatency(target Latency, priority of hurting throughput and window correctness)
	Manual Mode: setTargetLatency(target latency, hurting proportion between throughput and window correctness, low limit for throughput, low limit for window correctness)

	Evaluation
	Workload Analysis
	System Experimentation
	Performance Evaluation Experimentation

	Related Research
	Concluding Remarks and Future Directions
	References

