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Abstract: In the era of the fourth industrial revolution, the international community is striving
to establish a coordinated system to prevent fatal climate change in a global sense. As a result
of such changes in business environments, a new issue, sustainability, has recently presented a
paradigm shift and new research opportunity in which the theories and practices in traditional
production and operations management are being reinterpreted and reapplied in relation to this
emerging issue. Under this research background, we consider an optimal emission-trading problem
under a cap-and-trade (CAT) emission regulation when the customers’ demand is given as an
arbitrary probability distribution. Such a CAT approach to reduce the amount of emissions is a
normative system for the sustainable production of manufacturing firms, which is also closely
related to a well-known open innovation in literature of inventory management. Then, we formulate
two stochastic inventory optimization models, which can be applied immediately for two famous
CAT policies that exist in reality. In particular, our objective is to draw theoretical and practical
implications for baseline credit emission regulations, which are innovative and government-led
emission regulation policies, with a well-known newsvendor analysis. For our analytical results,
we first show that our objective functions are piecewise linear and (quasi)-concave. Thus, it is
found that there exists a unique optimal solution to the problem. Second, we successfully obtain
the closed-form optimal solutions for the two models considered. Finally, we conduct a sensitivity
analysis through a comparative static analysis to examine how the model parameters can affect the
optimal solution in each model. All these analytical results and implications are consistent with
previous studies in the literature, as well as with our insights for the models.

Keywords: cap-and-trade system; baseline credit regulations; newsvendor problem; emission right
trading; inventory management; sustainable production; open innovation

1. Introduction

As environmental concerns grow globally, it is emphasized that appropriate international controls
are required to prevent irreversible and lethal climate change and preserve the global ecosystem [1].
In the era of the fourth industrial revolution, the international community has been working together to
establish an international cooperation to continuously reduce carbon emissions [2]. Therefore, there is
a closely tied relationship between eco-friendly production and sustainability in manufacturing and
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service firms [3,4]. Although such a close relationship between them has become more prominent in
recent years, it is not a completely new phenomenon.

In recent years, researchers and practitioners in the field of production and operations
management (POM) have been studying increasingly challenging situations about how to combine
their traditional efficient and optimal production issues with a new emerging issue of sustainability.
In other words, as the order of the global economy becomes more complicated, it is evident that only
an immediate profitability does not guarantee the perpetual growth of companies and the economy.
As a result, people began to reflect deeply on the future of humans and the earth. Because of such
changes in business environments, a new issue, sustainability, has recently presented a paradigm
shift and new research opportunity in which the theories and practices in traditional production
and operations management are being reinterpreted and reapplied in relation to this emerging issue.
The authors of [4] have presented three specific research agenda that have been actively studied for
sustainable production in the field of POM over the last 20 years, which are green-product and process
development, lean and green POM, remanufacturing, and closed-loop supply chains. In contrast,
the optimal emission decision modeling under the emission trading system, which is the subject of
this study, is a relatively new research subject in the field of POM. Therefore, this subject needs to be
studied more actively in the near future.

Dating back in the past, more than 160 countries reached the United Nations Framework
Convention on Climate Change (UNFCCC) agreement in 1992, the first international treaty to
control carbon emissions [5]. However, the role of the UNFCCC is quite limited in that it is just
a preliminary and basic agreement for transnational global cooperation against climate change.
After then, the specific details of the UNFCCC reached a significant consensus in the Kyoto Protocol
in 1997 [6]. More specifically, in the Kyoto Protocol, participating major developed countries are
classified as Annex 1 groups. Then, among these countries, there have been agreements to impose
legally binding emission targets for various pollutants, including carbon dioxides. Although the
United States and Australia failed to ratify the Kyoto agreements among the major industrialized
nations, the agreements became effective in 2005. The Kyoto agreements first proposed a number of
trading mechanisms, including a flexible mechanism, as an international emissions trading system.
Thus, the Annex 1 Group countries allowed trading on their assigned emissions credits using the
international Emissions Trading (ET), ensuring compliance with pre-established emission limits in line
with market mechanisms.

These Kyoto agreements can be considered to have implemented a cap-and-trade (CAT) system
in that they allocate country-specific emission limits to Annex 1 countries. In the CAT system,
governments set an overall limit on the emission amounts of individual polluters by reference to past
emissions records, and polluters are allowed to emit within that limit [7,8]. As these emission rights can
be traded freely, each polluter can choose his optimal emissions decision based on his own economic
incentive—whether to sell the remaining amount of emission within the limit, or to purchase the excess
emission amount from other polluters. The optimal strategy of these polluters is influenced by external
circumstances such as the price of the extra emission quota, as well as the internal situation such as
the emission cost reduction of the polluters. In the literature, the CAT system has been known to lead
to an efficient way of production in manufacturing firms as well as a socially sustainable choice of
production from an economic point of view. Owing to these reasons, the CAT system can be compared
to a command-and-control system, one of the other normative emissions limit mechanisms [9].

This command-and-control system is one of the traditional approaches to pollution reduction
and is a way to specify and enforce emission limits for each polluter [10]. Command-and-control
systems do not allow the transfer of pollutant reduction responsibilities to companies that can do this
more efficiently and at a lower cost [11]. In other words, the command-and-control system is a way
to enforce strict regulations based on quantity, and the resulting system cost increases. On the other
hand, the CAT method is based on price and focuses on economic incentives [12]. In addition, from a
modeling standpoint, command-and-control can be applied only if the end customer’s demand is
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known as a constant, because it aims to control emissions completely. In contrast, the CAT system can
be applied to cases where the demand of end customer is both deterministic or probabilistic. For these
reasons, the CAT system has been confirmed to be useful both academically and practically, and has
been actively studied.

In this way, for the CAT and command-and-control systems, two normative systems for reducing
emissions, it can be argued that these two systems have the following logical links with open and
closed innovation. First, open innovation aims to open up the innovation process and utilize internal
and external resources in a balanced way to improve the operational activities of the companies.
By doing so, we intend to maximize the creation of value added by reducing the cost of innovation and
increasing the likelihood of success. In other words, the open innovation that Chesbrough originally
claimed is to accelerate internal innovation and expand the external utilization to the market of
innovation by appropriately utilizing the intellectual flow of knowledge and the outward knowledge
flow [13]. The process of open innovation is about how companies combine internal and external ideas
to build architectures and systems through their business models. In contrast, the concept of closed
innovation emphasizes that a successful innovation process requires internal control of key business
activities, such as production, as well as ideas for innovation. In that sense, when an innovation
process is applied for an emissions trading scheme, the CAT system can then lead to total optimality in
the emissions decision by purchasing extra or insufficient emissions through trading in the market.
This means that the CAT system can actively utilize external resources by purchasing or providing
emissions credits to external vendors. Thus, the CAT system is equivalent to applying the innovation
process to an emissions trading scheme from an open innovation approach. On the other hand,
the command-and-control system corresponds to the application of the closed innovation approach
in an emissions trading scheme, in that companies make their own optimal emissions decision in an
internal basis.

In the literature, there exist two innovative regulation approaches, pollution tax regulations (PTR)
and baseline credit regulation (BCR), as the practically feasible regulation policies for implementation
of the CAT system [10,12,14]. Indeed, each of the two approaches functions as a tax (or subsidies for
negative values) that is affected by the costs and reduction amounts of pollution abatement. Then,
operational optimization models can be considered for individual companies based on each regulatory
approach as follows. First, the purpose of PTR is to reduce the pollutant emissions by imposing per
unit cost on the pollutants generated from firms’ production activities. When the pollutant emissions
exceed or fall below the emission limit, the difference can be traded in the market. Second, under BCR,
only if the pollutant emissions exceed the predetermined baseline, the difference can be purchased
from other polluters. That is, if the emission amount is less than the baseline, the difference will be
discarded. Note that which of these two approaches policymakers choose will be affected by the
nature of the pollutant [15]. For example, in the case of carbon dioxide, there is very little difference in
the environment depending on the place where it is discharged. Therefore, the emission reduction
cost per unit amount shows little difference according to the place of emission, so the PTR is more
appropriate because the place of emission is not a big issue from the environmental point of view and
the market price of the emission trading can be determined relatively uniformly. On the other hand,
the environmental impacts of sulfur dioxide, mercury, and nitrogen compounds are very different from
region to region. Thus, the price of emission trading may not be the same in each region, and then BCR
may be a better approach in a CAT system [15,16]. In addition, the authors of [15] pointed out policy
choices and economic factors as the reasons for these price differences. Among these, policy choices
are actually determined by governments, which is related to how the CAT system is structured and
which specific factors are included in the design of the system. Economic factors include development
of environmentally friendly technologies and market penetration, or government funding policies
and tax incentives. Meanwhile, the authors of [16] illustrate examples in which some pollutants (e.g.,
dioxins, obsolete pesticides) have more severe environmental problems in the world.
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In this study, we focus on the BCR approach in the CAT system to provide a stochastic optimization
inventory model, in contrast to the previous studies in the literature that focus on the PTR approach.
Thus, our goal is to provide an optimization model with the BCR approach that maximizes the
operational efficiency of individual companies and to derive the theoretical implications and insights.
The main research questions of this study are as follows: (1) how can BCR methods in a CAT system be
formulated into an inventory management optimization model? (2) does there exists a unique optimal
solution in the BCR optimization models? (3) how does the optimal solution change when the values
of the model parameters vary? To this end, we provide the optimization model and analyze it with a
sensitivity analysis.

The remainder of the study is composed as follows. In Section 2, we discuss the theoretical
background and examine CAT carbon emission approaches and their modeling results that have been
studied in the literature. In Section 3, we derive two optimization models with the BCR approach
and analyze the models. We obtain a closed-form optimal solution for each BCR model and conduct
a sensitivity analysis for the optimal solution. For this purpose, we provide our comparative static
analysis to examine the impacts of model parameters on the optimal solution. Finally, in Section 4,
we summarize our main results and contributions, and presents some limitations and future directions
of research.

2. Literature Review

In response to these growing international interests, the issues of energy efficiency and
environmentally friendly production have been actively studied in the literature from engineering and
economics perspectives. Such examples of engineering issues include energy-inefficient equipment
and facility replacement, product and packaging redesign, use of renewable energy, and energy-saving
process processes [17]. The authors of [18] develop an innovative initial allocation scheme of tradable
carbon emission allowance for manufacturing companies in Shenzhen, China. The basic idea of the
scheme is to determine allowance allocation by actual output and carbon intensity. Then, they establish
a two-step allocation procedure and introduce a competitive game mechanism to allocate allowance
amounts. On the other hand, from the economic point of view, designing international trade
mechanisms for emissions trading has been frequently studied in the literature. Then, the focus
was given to the policy effects on eco-friendly regulations. In particular, these policy regulations can
be categorized into two groups—based on prices and quantities, respectively. Note that price-based
regulation mainly addresses imposing taxes on carbon emission amounts, while quantity-based
regulation allocates maximum allowable amounts to emissions by which companies can trade the
emission rights in the market [17,19–21]. From our broad literature review, it is found that there are
a relatively small number of papers to analyze operational efficiency and optimization models with
the CAT system. However, in recent years, some papers have been studied, including this work,
on optimal modeling of the emission trading decision from a perspective of sustainability. Next,
from an analytical point of view, several previous studies of sustainable CAT optimization models can
then be divided into two groups—deterministic and stochastic models.

First, in the deterministic models, the authors of [8] set up an inventory management model
with the carbon emissions trading regulations. More specifically, they applied the classic economic
order quantity (EOQ) model to formalize the carbon emissions problem and, as a result, proposed a
modified EOQ model including a carbon balance constraint. They also obtained a closed-form solution
for optimal inventory level and performed a comparative static analysis of the optimal solution for
the model parameters including carbon emission limits and prices. Finally, they confirmed analytical
results through numerical analysis and provided interesting intuitions and insights into their research
model. The authors of [17] presented several deterministic optimization models for various regulatory
methods related to carbon emissions and formalized them into multi-period mixed integer linear
programming (MILP) models. They then conducted extensive numerical analysis and, as a result,
presented meaningful implications and insights along with economic explanations. The authors
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of [22] considered a two-echelon supply chain management (SCM) model with one retailer and one
manufacturer, respectively. They assumed that both retailer and manufacturer could invest in greening
efforts and, in proportion to this, increase the demand from end customers. They then compared the
sensitivity of the optimal greening efforts and greening costs in centralized and decentralized supply
chains. Finally, among various methods of SCM coordination considered, a two-part tariff contract
was found to coordinate the given SCM model. The authors of [23] consider two carbon policies,
carbon CAT and carbon tax regulation, under exogenous and endogenous sustainable trade credit,
which is one of the most commonly used short-term funding methods. Then, under these model
settings, the structural characteristics of the optimal solutions are analyzed with a numerical study.
The authors of [24] analyze how a retailer determines her optimal ordering quantity with a CAT system
and trade credit. Then, they show that the CAT system and trade credit jointly affect the retailer’s
optimal ordering quantity. The authors of [25] provide an optimization model and its algorithm for a
closed-loop production routing problem with simultaneous pickups and deliveries (PRPSPD) in a CAT
system for carbon emission. Specifically, they formulate the CAT with PRPSPD as a mixed-integer
linear programming problem with a branch-and-cut guided search algorithm. Finally, they conduct
an extensive computational experiment to evaluate the performance of their algorithm and develop
managerial implications through their sensitivity analysis. The authors of [26] consider a Stackelberg
game of a dual-supply chain, which contains an online direct channel and offline traditional retail
channel. Then, it discusses the pricing decision in the supply chain as well as the impact of the
CAT system on emission reduction policies. Finally, it is also shown how the impact of customers’
low-carbon preference affects the optimal pricing and emission reduction amount. The authors of [27]
handle material purchasing in terms of sustainability. Then, they develop a bi-objective EOQ model
of transportation and lot-sizing when seeking a Pareto frontier with a CAT mitigation policy. Finally,
they conduct a parametric analysis, based on real industrial cases, to show a sensitivity analysis of
the results.

Second, in the stochastic model, the authors of [28] provided an excellent summary of the previous
works in this research stream. As can be inferred from the above summary, the previous CAT stochastic
models, including the work of [29], focused on sustainable SCM coordination rather than determining
the optimal production level for individual manufacturing firms. On the other hand, this study has
significant theoretical contributions in that it analyzes the optimal production amount of individual
manufacturing firms with BCR by applying the well-known newsvendor models in POM literature.

The newsvendor model has initiated since the seminal work of [30], which corresponds to a classic
model of the literature at stochastic inventory management. More specifically, it is an optimization
model for determining the optimal inventory level in a single-selling season in which the demand
for end customers is not fixed but only as a form of a probability distribution. It is effectively
modeling the reality of inventory management decision making and can find its applications in various
demand-driven manufacturing and service supply chains. In other words, the newsvendor model
corresponds to a mathematical optimization model that effectively compresses the real inventory
decisions faced by the inventory managers as a trade-off between overage and underage costs.
In addition, from an analytical point of view, one of the major advantages of the newsvendor model is
that it can be formulated as an unconstrained optimization model. Furthermore, when there are no
additional (e.g., budget or resource) constraints reflecting the actual inventory management situation,
the newsvendor model has a closed-form optimal solution with arbitrary demand distributions,
which provides simple yet powerful insights into the model. While the work of [28] is one of the most
similar studies in the literature, it considered and analyzed the impacts of a PTR in a CAT system,
which is different from our study.

Since then in this research stream of inventory management literature, various types of expanded
and modified newsvendor models have been actively studied in this research stream [31,32]. Here,
the authors of [31] pointed out that newsvendor problems have a wide applicability in manufacturing
and service companies as product life cycles tend to decrease, which is what happened in recent
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time. Then, the authors of [31] categorized existing newsvendor models into 11 groups, each of
which theoretically belong to a certain class of newsvendor problems. For more details, please refer
to the work of [31]. Next, the authors of [32] intend to review the previous works in the literature
with three research streams, which are customer demand types, supplier pricing policies, and buyer
risk profile. First, the analysis of customer demand types is related to how the optimal ordering
amount is influenced when customers’ demand is a function of (1) market price; (2) marketing effort;
and (3) stocking quantity. In (1), unlike the classic newsvendor problem where selling price is given
exogenously, price-dependent demand is assumed in the model. Then, the existing studies consider
additive and multiplicative demand with a random term. Each of the works studied shows structurally
different analytical results depending on each model and demand type. Next, in (2), it is assumed
that various marketing activities may affect customers’ demand. This stream of research is very
important in our study because such impact of marketing efforts can be similarly extended to our
subject, newsvendor problems with sustainability, like the impact of greening efforts on demand.
Under this setting, the analytical results in the previous studies generally show that an increased mean
demand due to marketing efforts steps up optimal ordering quantity. However, the effect of a decrease
in demand variability is indeterminate because of marketing efforts. In (3), the stocking amount
displayed in retail stores is assumed to influence the ordering decision. Second, the analysis of supplier
pricing policies considers a supply chain coordination through supplier pricing. Then, it also studies
various types of quantity discount models such as linear quantity discount, all-units quantity discount,
and incremental-unit quantity discount models. In the last case, the analysis of buyer risk profile is
related with various risk preferences of newsvendors. That is, the most common risk preference in
the literature of inventory management is risk neutrality, which is equivalent to the expected-value
optimization model in a modeling perspective. However, some inventory managers may not be
risk-neutral. Rather, they may prefer risk aversion or risk seeking. After examining the previous
studies and empirical evidence, general utility functions, mean-variance, and coherent risk measures
have been discussed. Although each model setting has different analytical results, a general finding is
about how the degree of risk aversion affects the optimal ordering amount. For this effect, when the
unit shortage cost, due to stockout penalty, is less than the given threshold value, risk aversion leads
to the lower optimal solution. However, if the unit shortage cost is sufficiently high, risk aversion
generally increases the optimal solution.

In the last case, there are also a few more works in the literature to study the regional diversity
of the environmental impacts in some pollutants, including sulfur dioxide, mercury, and nitrogen
compounds, as follows. The authors of [33] estimated the amount of sulfur dioxide emissions at
world and regional levels, caused by anthropogenic sources from 1980 to 2000. As a result, there has
been no significant change in anthropogenic annual sulfur dioxide emissions from the world for
20 years, but there has been a major regional change. Remarkably, while the share of North America
in sulfur dioxide emissions has been greatly reduced, Asia’s share has continued to increase steadily,
which seems to be due to Chinese economic growth. This study has a major contribution in providing
a clear pattern of data on the impact of human economic activity on the climate. Then, the authors
of [34] extended the investigation period for sulfur dioxide emissions and estimated the amount of
sulfur dioxide emissions caused by anthropogenic sources from 1850 to 2005. As a result, in addition
to China’s economic growth, the main reasons for the recent increase in sulfur dioxide emissions are
international shipping and global economic growth, mainly in developing countries. In addition,
it is pointed out that the volatility of the sulfur dioxide emissions is relatively stable at the world
level, while the regional variability is increasing. The authors of [35] examined the environmental
impact of mining activities on soil and superficial waters as well as local atmosphere associated to
an abandoned Hg mine in Spain. Then, waste generated and accumulated on the ground and water
surfaces, potentially causing acid rains. As a result, even the old metallurgical waste has a significantly
harmful effect on their environments. The authors of [36] point out that the emission of nitrogen
compounds has a serious adverse effect on climate change as a greenhouse gas (GHG) when their
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concentration exceeds some certain level. In particular, the need for managing the animal waste
problem is critical to develop sustainable solutions for this problem. In order to resolve the problem,
all of the environmental issues including air, water, and soil should be examined for a long-term,
comprehensive strategy. Accordingly, some countries such as Europe and Canada have raised issues
related to technically and economically developing feasible solutions for animal waste problems.

3. Problem Formulation

In this section, we describe our mathematical model with the BCR approach as follows. Initially,
an inventory manager faces purchasing costs c for the raw material and then finally resells her finished
products to customers at an increased price p. Then, she needs to determine her optimal production
quantity x to satisfy customers’ demand. Note that we assume our problem is a single-echelon model
to simplify manufacturing environments.

With a BCR problem setting, let us denote α and K as the unit trading value for emission right
and the initial permissible emission cap, respectively. In addition, the emission amount is initially zero
when the production quantity is zero. Once production occurs, the (fixed) base emission amounts of
a are generated, and then emissions increase in proportion to production quantity with a constant
coefficient b for the extra emission charge per unit item produced. Note that total emission amount e(x)
is assumed to be a function of production quantity x as a + bx only except for an instantaneous jump
of size a at the level of zero production. Note that in order to avoid a trivial solution, it is reasonable
to restrict the range of the optimal production quantity as a set of positive values without loss of
generality. Finally, the total emission amount e(x) can be represented simply as a + bx, which is a
linear function of x for any positive production quantity.

Next, if the total emission amount is larger than the initial permissible emission cap (i.e.,
a + bx ≥ K), the inventory manager should purchase and then fulfill the difference a + bx− K from
available emission right suppliers with the unit trading value α. Otherwise, if the total emission
amount is below the emission cap as a + bx < K, the remaining emission right would be discarded.

In the literature of inventory management, many academic works, including newsvendor models,
have considered an uncertain demand to incorporate the imbalance between supply and demand.
According to this tradition, an inventory manager faces a stochastic demand D for a single product
with its cumulative distribution function FD(·) and probability density function fD(·). In this problem,
this inventory manager needs to determine his/her optimal production quantity x before the realization
of the demand.

Then, the inventory manager has a profit function as follows:

Π(x, D) = p ∗min{D, x} − cx + v(x− D)+ − s(D− x)+ − α(a + bx− K)+, (1)

where (·)+ = max(0, ·). In Equation (1), the first term implies the total revenue for the inventory
manager. As the initial on-hand inventory is zero, the inventory manager can sell no more than his
on-hand inventory even if the on-hand inventory is smaller than the realized demand. In the next,
the second term is the purchasing costs for raw material to produce x units. Then, the third and fourth
terms are salvage value and stockout penalty costs, respectively. In particular, if the realized demand
is higher than the production quantity, this item is short of the difference D− x incurring shortage
cost s per unit. These shortage costs per unit when sold out are related to the costs that occur due to
stockout penalty. Then, lost sale is a common practice in a manufacturing setting. If excess demand is
lost, the stockout cost means the opportunity cost of unrealized profit, mainly due to lack of inventory.
Thus, such stockout penalty costs are generally proportional to the amount of the unmet demand [37].
Similarly, if the realized demand is lower than the production quantity, the inventory manager can
get only the salvage value v per unit. That is, a unit salvage value implies perishability of the item
produced. Such perishabiliy often occurs not only in items that can easily depreciate in value, such as
food, but also in manufacturing items, where technical obsolescence can occur. Next, the fifth term
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indicates a trading value for the emission shortfall amounts with the emission cap K to incorporate
the BCR system. In the last, we also need to have the conditions, (1) α ≥ 0, b ≥ 0, 0 ≤ a ≤ K and (2)
0 < v < c < c + αb < p, to avoid trivial solutions with classic newsvendor problems and the BCR
approach. Finally, our objective function for the inventory manager is to maximize the expected profit,
which is given as follows:

max
x≥0

E[Π(x, D)]. (2)

Currently, Equation (2) implies an unconstrained stochastic optimization model only except for the
non-negativity condition x ≥ 0 in a modeling perspective. In the last, similar to the work of [28], let us
classify the model parameters into two groups. The first group covers p, c, v, s, which form the first
four terms in Equation (1) to represent the basic newsvender problem. In comparison, the second group
includes a, b, K, α, which are in the fifth term in Equation (1) to specify the BCR system. From now
on, let us denote that the first four terms and the last (fifth) term of Equation (2) are newsvendor and
BCR terms, respectively. Similarly, if the BCR term is replaced by −α(a + bx− K), Equation (2) is
equivalent to the objective function of Model 2 in the work of [28] when λ = 1, which we call a PTR
term. From that sense, this work is a direct extension of the work of [28] when the BCR term is replaced
by the PTR term with λ = 1. Next, let us call the first and second groups of the model parameters
as newsvendor and CAT parameters because both the BCR and PTR terms can be represented by
a, b, K, α.

4. Mathematical Analysis

Now, we begin our analysis with the results of Model 2 in the work of [28] with λ = 1, which we
call Model 0 as a base model of the study. For Model 0, we redefine a new profit function Π0(x, D)

as follows.

Π0(x, D) = p ∗min{D, x} − cx + v(x− D)+ − s(D− x)+ − α(a + bx− K). (3)

That is, the difference between Π(x, D) and Π0(x, D) is only at the last term in which −α(a + bx− K)+

is replaced by −α(a + bx− K). Then, we set up Model 0 by taking an expected-value operator over
Π0(x, D), which is as follows:

Model 0 : max
x≥0

E
[
Π0(x, D)]= E[p ∗min{D, x} − cx + v(x− D)+ − s(D− x)+ − α(a + bx− K)

]
. (4)

Then, the (risk-neutral) objective function of Model 0 consists of newsvendor and PTR terms,
while that of Model 1 is the expected sum of newsvendor and BCR terms. From that sense, Model 0 lays
a theoretical background for our model as a preliminary result. In addition, the BCR term in Model 1
shows an asymmetric cost structure at a kinked point x = (K− a)/b, while the PTR term in Model
0 represents a symmetric cost structure in x. Note that only Models 1 and 2 are our research model,
while Model 0 is a reference model of the study because Model 0 is a special case of Model 2 in the
work of [28]. Then, we will show how Models 1 and 2 are closely related to Model 0, but different from
one another.

Lemma 1. In Model 0, the objective function E[Π0(x, D)] is concave for all x and there exists a unique optimal
order quantity x̂0(α) = F−1

D

(
p+s−c−αb

p+s−v

)
. In addition, if α = 0, x̂0(0) = F−1

D

(
p+s−c
p+s−v

)
, which implies a

classic newsvendor problem with no BCR and PTR terms.

Proof. For the exact proof procedure, please refer to Lemma 1 in the work of [24].

Lemma 2. In Model 0, higher values of p, s, and v increase x̂0(α), while higher value of c decrease x̂0(α) for
the newsvendor parameters. For CAT parameters, higher values of b and α decrease x̂0(α), while the parameters
a and K do not affect x̂0(α).
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Proof. The Lemma 2 is about the sensitivity analysis for the impacts of the newsvendor and CAT
parameters in Model 0. For this sensitivity analysis, our proof idea is to directly use supermodularity
(refer to the work of [38]) and implicit function theorem at the results of Lemma 1.

4.1. Analytical Results for Models 1 and 2

Now let us resume our analysis with Model 1 where its objective function, E[Π1(x, D)], is the
same as E[Π(x, D)] in Equation (2) as we simply re-denote Π1(x, D) ≡ Π(x, D). Then, Model 1 can be
re-described as follows:

Model 1 : max
x≥0

E
[
Π1(x, D)]= E[p ∗min{D, x} − cx + v(x− D)+ − s(D− x)+ − α(a + bx− K)+

]
. (5)

Then, the following Theorem 1 shows the closed-form optimal solution in Model 1.

Theorem 1. If K ≥ a + bx̂0(0) , the optimal solution of Model 1 x̂1(α) = x̂0(0) = F−1
D

(
p+s−c
p+s−v

)
. Otherwise,

if K < a + bx̂0(0), x̂1(α) = x̂0(α) = F−1
D

(
p+s−c−αb

p+s−v

)
.

Proof. First of all, we can take the first derivative of Equation (5) as follows.

dE[Π1(x, D)]

dx
=

{
(p + s− c)− (p + s− v)FD(x), x ≤ (K− a)/b

(p + s− c− αb)− (p + s− v)FD(x), x > (K− a)/b
. (6)

Then, a necessary condition of the optimal solution is the point of x where the value of the
first-order condition is equal to zero

(
i.e., dE[Π1(x,D)]

dx = 0
)

. Now, the first derivative may take two
different forms depending on the value of x with the given CAT parameters. Then, we can derive
the optimal solution for each case, respectively, by equating the first derivative to zero. For a
sufficient condition of the optimal solution in an unconstrained maximization problem, the value of
the second-order condition is always non-positive. Then,

d2E[Π1(x, D)]

dx2 = −(p + s− v) fD(x) ≤ 0, (7)

because p + s− v > 0 and fD(x) ≥ 0 for every x ≥ 0. Although our objective function is actually
piecewise linear and quasi-concave, the existence condition of our optimal solution does not change.

Next, we modify our Model 1 slightly to extend it to another model, Model 2, as follows.
In Model 1, we assume that the amounts of the remaining emission right (K− a− bx)+ would be
discarded. Then, in Model 2, we can obtain some value β from the remaining emission right per unit,
but α ≥ β. For this reason, note that this Model 2 is a more generalized problem of Model 1 previously
studied. That is, if β = 0, Model 2 is equivalent to Model 1. On the other hand, if α = β, Model 2 is
equivalent to Model 1, but the BCR term is replaced by the PTR term. As these two special cases do not
add a big theoretical contribution, we focus on Model 2 with the condition α > β. Thus, we redefine a
new profit function Π2(x, D) for Model 2 as follows:

Π2(x, D) = p ∗min{D, x} − cx + v(x− D)+ − s(D− x)+ − α(a + bx− K)+ + β(K− a− bx)+. (8)

Similarly, we set up Model 2, which is max
x≥0

E[Π2(x, D)], as follows:

Model 2 : max
x≥0

E[p ∗min{D, x} − cx + v(x− D)+ − s(D− x)+ − α(a + bx− K)+ + β(K− a− bx)+]. (9)

Then, we will show the closed-form optimal solution in Model 2 from the following Theorem 2.
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Theorem 2. If K ≥ a + bx̂0(β), the optimal solution of Model 2 is x̂2(α, β) = x̂0(β) = F−1
D

(
p+s−c−βb

p+s−v

)
.

Otherwise, if K < a + bx̂0(β), x̂2(α, β) = x̂0(α) = F−1
D

(
p+s−c−αb

p+s−v

)
.

Proof. First of all, we can take the first derivative of Equation (9) as follows.

dE[Π(x, D)]

dx
=

{
(p + s− c− βb)− (p + s− v)FD(x), x ≤ (K− a)/b
(p + s− c− αb)− (p + s− v)FD(x), x > (K− a)/b

. (10)

Then, we can obtain the second derivative of Equation (9), similarly obtained at Equation (6), as follows:

d2E[Π(x, D)]

dx2 = −(p + s− v) fD(x) ≤ 0. (11)

Then, the remaining proof procedure is similar to that of Theorem 1.

4.2. Discussions

In this subsection, we analyze the closed-form solutions in Theorems 1 and 2 to summarize the
managerial interpretations and implications as below. We conduct a sensitivity analysis through a
comparative static analysis for the impacts of newsvendor and CAT parameters on the optimal solutions
in Models 1 and 2. According to the definition of comparative static analysis, we choose a (newsvendor
or CAT) parameter (or exogenous variable) from each model, and then see how changes in the value of
the selected parameter affect the optimal solution, which is an endogenous variable, while all other
parameters still keep the same values [39]. In particular, by conducting the analysis, we aim to verify
whether the direction of the impact is monotone (increasing or decreasing) or indeterminate.

In addition, our goals through comparative static analysis are primarily focused on the analysis of
the general effects of the parameters in our research models on optimal production quantity. In other
words, the parameters of the research models do not directly affect the optimal objective value,
the expected profit. Rather, we can see that there exists a mediating variable, optimal production
quantity, which is also a decision variable. That is, the final relationship between the parameters and
expected profit is determined by a combination of the two relationships in which the parameters of the
study model first affect the optimal solution and then the optimal solution again affects the expected
profit. Then, owing to the definition of comparative static analysis in the work of [39], our analytical
method is to analyze only the first relationship, which has been a common analytical method in POM
literature. In addition, another reason to consider the first relationship only is that the expected profit
is a concave function of an optimal solution. It implies that the second relationship does not preserve
the (monotone) direction of the first relationship. As a result, because of the mixed effects of the first
and second relationships, the direction of the impact in the final relationship would become overly
complicated without additional meaningful implications nor insights to our decision, production
quantity. Thus, we provide our discussions based on the analysis of the first relationship as below.

Observation 1. In Model 1, let us first consider the impacts of the newsvendor parameters. Then,
the direction of the impact of p is not monotone. In fact, we split totally three cases: (1) K > a + bx̂0(0);
(2) K = a + bx̂0(0); and (3) K < a + bx̂0(0). For the sensitivity analysis of p, we start with a sufficiently
small value of p where it satisfies case 1. Then, in case 1, p increases the optimal solution, x̂0(0).
When we increase the value of p continuously, it starts to satisfy case 2, instead of case 1 where
K = a + bx̂0(0). Here, the value of x̂1(0) falls vertically in case 2. When we again continuously
increase the value of p, it finally satisfies case 3, and increased p leads to higher optimal solution x̂0(α)

afterwards. Next, the parameters v and s have the same directions as the impact of p on x̂1(0) and
x̂1(α) for all three cases. For the impact of c, the direction is reversed. That is, when we start with a
sufficiently small value of c where it satisfies case 3. Then, in case 1, p decreases the optimal solution,
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x̂0(α). When we increase the value of c continuously, it starts to satisfy case 2. Here, the value of
x̂1(α) rises vertically in case 2. When we continuously increase the value of c, it finally satisfies case 1,
and increased c leads to lower optimal solution x̂0(α) afterwards.

Observation 2. Next, we consider the impacts of the CAT parameters in Model 1. For the sensitivity
analysis of a, it is found that when the value of a is sufficiently small, it initially satisfies case 1. Then,
in case 1, a has no effects on the optimal solution, x̂0(0). When we increase the value of a continuosly,
it starts to satisfy case 2. Here, the value of x̂1(0) falls vertically in case 2. When we again continuously
increase the value of a, it finally satisfies case 3, and increased a also has no effects on the optimal
solution x̂0(α) afterwards. For the sensitivity analysis of K, the direction of the impact is reversed
compared with that of a. That is, it initially satisfies case 3 where a has no effects on the optimal
solution, x̂0(α). Afterwards, it satisfies case 2 when the value of x̂1(α) rises vertically. Finally, it finally
satisfies case 1, and increased K also has no effects on the optimal solution x̂0(0). For the sensitivity
analysis of b, it initially satisfies case 1, and a has no effects on the optimal solution, x̂0(0). When we
increase the value of b continuously, it starts to satisfy case 2, and the value of x̂1(0) falls vertically in
case 2. When we again continuously increase the value of b, it finally satisfies case 3, and increased b
leads to lower optimal solution, x̂0(α). In the last case, for the sensitivity analysis of α, the direction of
the impact depends on whether it satisfies cases 1 and 2 or 3. If it satisfies cases 1 and 2, increased α

has no effects on the optimal solution, x̂0(α). Otherwise, if it satisfies case 3, increased α leads to lower
optimal solution, x̂0(α). Note that whether it satisfies cases 1 and 2 or 3 is determined not by the value
of α, but by the values of all other newsvendor and BCR parameters.

Observation 3. From the results of Theorem 1, the optimal solution in Model 1 has a jump at
the point of satisfying the condition K = a + bx̂0(0). Then, the (absolute) size of the jump is
F−1

D

(
p+s−c
p+s−v

)
− F−1

D

(
p+s−c−αb

p+s−v

)
. This implies that a higher value of α tends to make the jump size

bigger. Note that it does not mean increasing the jump size proportionally, in general. In fact, only when
demand is represented with uniform distribution does it lead to a proportional change of the jump
size in the value of α. Also note that when α = 0 trivially, the jump size shrinks to zero. In other words,
there is no kinked point of the optimal solution in the change of model parameters. In fact, when α = 0,
the BCR terms disappears, that is, the objective function only has newsvendor parameters, which is the
case of the well-known classic newsvendor problem in literature.

Observation 4. In Model 2, we also have three cases, similarly done at Model 1. However,
in Model 2, the boundary point between cases 1 and 3 satisfies the condition K = a + bx̂0(β) =

a + bF−1
D

(
p+s−c−βb

p+s−v

)
at case 2, which is different from the boundary point K = a + bx̂0(0) =

a + bF−1
D

(
p+s−c
p+s−v

)
in Model 1. Then, for the impacts of both the newsvendor (p, c, v, s) and CAT

(K, a, b, α) parameters on the optimal solution, x̂2(α, β), the results of the sensitivity analysis are
the same as those in Model 1 only, except for b and β. For the impact of b in Model 2, it initially satisfies
case 1, and b decreases x̂2(α, β). When we increase the value of b continuously, it starts to satisfy case 2,
and the value of x̂2(α, β) falls vertically. When we again continuously increase the value of b, it finally
satisfies case 3, and b decreases x̂2(α, β) relatively more steeply compared with the change in case 1.
For the impact of β, it initially satisfies case 3, and β has no effects on x̂2(α, β). When we increase the
value of β continuously, it starts to satisfy case 2, the value of x̂2(α, β) falls vertically. When we again
continuously increase the value of β, it finally satisfies case 1, and increased β leads to lower x̂2(α, β).

Observation 5. From the results of Theorem 2, the optimal solution in Model 2 has a jump at the point
of satisfying the condition K = a + bx̂0(β). Then, the (absolute) size of the jump is F−1

D

(
p+s−c−βb

p+s−v

)
−

F−1
D

(
p+s−c−αb

p+s−v

)
. Here, the condition α > β implies that the trading values of emission rights are higher

than those of emission rights when to purchase emission rights compared with the case to sell the
emission rights. Similar to Observation 3 in the analysis of Model 1, a higher difference of α− β tends
to make the jump size bigger.
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Observation 6. Suppose that demand uncertainty is removed in our models. That is, the variability
of the demand shrinks to be zero, while the expected value of demand remains the same. Finally,
we obtain the corresponding deterministic models with fixed demand. In this case, the optimal
solutions for Models 0, 1, and 2 are equal to D (fixed demand), where the mismatch costs are minimized
between supply and demand. This implies that the original stochastic models and their corresponding
deterministic models are structurally very different.

Observation 7. For analytical tractability, we focus on two single-stage, single-period, and
single-echelon models with only one product in our work. Because of these simple characteristics in
the models studied, we are able to obtain the closed-form optimal solutions as above, respectively.
For the generalizability of our work to the corresponding multi-product model, let us think of a
two-product case with Π1 (the profit function partially obtained from product 1), Π2 (the profit
function partially obtained from product 2), and Π0 (the total profit function from products 1 and
2). As an expected-value operator satisfies additivity, E[Π0] ≡ E[Π1] + E[Π2], which implies that
the expected value of totality is equivalent to the total sum of the expected value of the part. As this
relationship can easily be shown to be valid for an arbitrary number of products, the multi-product
model is always decomposable as long as our optimization models do not have additional constraints.
That is, our analysis leads to the same optimal solution for each product whether we consider a
single multi-product model as a whole or not multiple single-product models for each product. Thus,
our results in a single-product model are generalizable for the case with multiple products under
sound conditions.

However, once the model becomes more complicated in other ways (e.g., multi-stage, multi-period,
and multi-echelon models), the extended models are not separable, in general. Thus, our’s and
extended models are clearly different from each other, inevitably leading to different optimal solutions.
In fact, it is believed that every single model in this research stream embodies some certain problem in
real world cases, so even a very simple model seems to be worth studying because of its own unique
features and characteristics that exist in reality.

In summary, we provide Table 1 to compare the sensitivity analysis results in the above five
Observations 1 through 5 as follows. In Table 1, ↑ (or ↓) means monotone increasing (or decreasing),
while ↓↓ implies relatively decreasing more steeply than ↓. In addition, FV (or RV) means falling
(or rising) vertically while NE and NA imply no effects and not available, respectively. The results of
Table 1 show that the analytical results in Models 0, 1, and 2 are closely related but different from each
other. In order to highlight the differences, we compare the sensitivity analysis results in Model 1 with
those in Model 0, and then see the differences between Model 1 and 2. First, in the comparison between
the results of Models 0 and 1, the most distinguishing characteristic is that the optimal solution in
Model 1 is jumping up or down at case 2 with K = a + bx̂0(0) for all the newsvendor parameters
(p, v, s, c) and some of the BCR parameters (K, a). Then, the directions of the impacts of b and α are the
same as in case 3, but different in to those in cases 1 and 2. Second, in the comparison between the
results of Models 1 and 2, the location of the kinked point in case 2 changes to another point satisfying
the condition, K = a + bx̂0(β), from the point satisfying the condition, K = a + bx̂0(0). Next, all the
directions of the impacts of all the newsvendor parameters (p, v, s, c) and some of the BCR parameters
(K, a, α) are the same as each other, while the direction of the impact of b is the same as in case 2,
but different to that in cases 1 and 3. In the last case, β is a new BCR parameter in Model 2, so the
direction of the impact of β is freshly studied in Model 2.
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Table 1. Results of sensitivity analysis in Models 0, 1, and 2. FV—falling vertically; RV—rising
vertically; NE—no effect; NA—not available; BCR—baseline credit regulation.

Parameters Model 0 Model 1 Model 2

Newsvendor

p ↑
If K > a + bx̂0(0), ↑ If K > a + bx̂0(β), ↑

At K = a + bx̂0(0), FV At K = a + bx̂0(β), FV
If K < a + bx̂0(0), ↑ If K < a + bx̂0(β), ↑

v ↑
If K > a + bx̂0(0), ↑ If K > a + bx̂0(β), ↑

At K = a + bx̂0(0), FV At K = a + bx̂0(β), FV
If K < a + bx̂0(0), ↑ If K < a + bx̂0(β), ↑

s ↑
If K > a + bx̂0(0), ↑ If K > a + bx̂0(β), ↑

At K = a + bx̂0(0), FV At K = a + bx̂0(β), FV
If K < a + bx̂0(0), ↑ If K < a + bx̂0(β), ↑

c ↓
If K < a + bx̂0(0), ↓ If K < a + bx̂0(β), ↓

At K = a + bx̂0(0), RV At K = a + bx̂0(β), RV
If K > a + bx̂0(0), ↓ If K > a + bx̂0(β), ↓

BCR

K NE
If K < a + bx̂0(0), NE If K < a + bx̂0(β), NE
At K = a + bx̂0(0), RV At K = a + bx̂0(β), RV
If K > a + bx̂0(0), NE If K > a + bx̂0(β), NE

a NE
If K > a + bx̂0(0), NE If K > a + bx̂0(β), NE
At K = a + bx̂0(0), FV At K = a + bx̂0(β), FV
If K < a + bx̂0(0), NE If K < a + bx̂0(β), NE

b ↓
If K > a + bx̂0(0), NE If K > a + bx̂0(β), ↓
At K = a + bx̂0(0), FV At K = a + bx̂0(β), FV

If K < a + bx̂0(0), ↓ If K < a + bx̂0(β), ↓↓

α ↓ If K ≥ a + bx̂0(0), NE If K ≥ a + bx̂0(β), NE
If K < a + bx̂0(0), ↓ If K < a + bx̂0(β), ↓

β NA NA
If K < a + bx̂0(β), NE
If K = a + bx̂0(β), FV
If K > a + bx̂0(β), ↓

5. Conclusions

As both sustainability and open innovation have become pivotal subjects in the fourth industrial
revolution, or industry 4.0 [40–43], emission abatement in manufacturing firms has also been a hot
topic in the literature. In particular, this topic corresponds to the sustainable production through
an open innovation approach. Thus, it is necessary to actively consider various factors involved
in eco-friendly production in determining the production activities and process in manufacturing
companies. As described in the works of [4,44], a conceptual framework for this new trend is the triple
bottom line (TBL) approach, by which manufacturing companies can capture the social and economic
goals simultaneously. In addition, the CAT system helps manufacturers to determine their production
decision under a collaboration with external vendors, so it is in harmony with an open innovation
approach. Note that in the era of the fourth industrial revolution, companies face a greater risk in their
business environments. Then, open innovation can be a good approach to improve the decision making
of newsvendors under risk by taking a balance from internal and external resources in companies.
That is, we can reduce our vulnerability with risk pooling in supply chain participants [45,46].

In this paper, we consider an emission decision problem with BCR. Then, in this stream of
literature, PTR and BCR have been proposed as the actual, implementable policies in practice. Both of
these approaches are in good harmony with innovative government-led policies that fit well with
open innovation as well as the fourth industrial revolution, in that manufacturing companies pursue
sustainable production with reasonable economic motivation. Nevertheless, the previous studies in
the literature focus on PTR but not on BCR. In order to fill this gap of knowledge, this study aims to
support the smart decision making of innovative manufacturing firms by presenting the optimization
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model and its analytical result that can maximize the operational efficiency of the firms under the
BCR basis.

Now, we can summarize our theoretical contributions as follows. We provide our methodology of
mathematical modeling to analyze and compare BCR and PTR approaches. Then, with a mathematical
modeling and analysis, the objective function is to maximize an expected profit because our problem
is a stochastic optimization problem with demand uncertainty. Then, our problem is formulated
as a piecewise linear and quasi-concave function due to a kinked point between the total emission
amount and emission cap. Then, we analyze the two models, which are different from the trading
values in the remaining emission right per unit. As a result, we show that the optimal solution exists
uniquely. Afterwards, we conduct a sensitivity analysis to perform a comparative static analysis.
By doing so, we can examine how the optimal solution can be influenced by the model (newsvendor
and CAT) parameters.

Meanwhile, a practical contribution of our study is that our mathematical models have immediate
applicability for BCR and PTR approaches, which are two famous CAT policies that exist in reality.
Thus, our study can add a valuable feature in POM literature with a direct application to sustainable
production in manufacturing companies. From that point, our work can be classified more closely to
an application modeling rather than theoretical modeling. Although the analytical results are quite
similar, these two CAT optimization models with BCR and PTR approaches are not the same and can
be applied for different pollutants. Note that the previous studies for the CAT systems have focused
on the PTR approach, which is mainly useful to analyze the emission problems for carbon dioxide.
Although this phenomenon is consistent with the trend in this stream of research, there still exists a
knowledge gap in literature for the analysis of emissions decision problems in other non-carbon major
pollutants such as sulfur dioxides, mercury, and nitrogen compounds. From that sense, our study has
another practical contribution in the literature to resolve a well-known pollution hotspot problem in this
research stream [47].

For future directions of our work, we may consider the following topics. First, we consider a
newsvendor approach to hypothesize a stochastic demand of end customers in the models studied.
Then, it can be extended to an SCM problem with more than a single-echelon problem. Thus, we can
add SCM issues including coordination contracts in decentralized and centralized SCM problems.
Second, similar to the first future direction as above, we can consider some extended models with
multi-stage or multi-period models in this research stream. It is obvious that such extended models are
totally different from our models to be applicable for certain production processes in manufacturing
companies. Unfortunately, it seems that we are unable to derive such strong analytical results for
these extended models compared with the results in this work. Then, rather than sensitivity analysis
through a comparative static analysis, a new analytical methodology may be needed for the models,
such as simulation-based numerical experiments or heuristic algorithms. Third, some additional
characteristics in pollution reduction can be included in the model such as greening investment.
In these cases, the greening investment may cause the relevant demand expansion in the model. In the
last, but not the least case, the risk preferences for inventory managers may take other risk attitudes
than risk neutrality. Some possible risk preferences could be risk aversion, loss aversion, and so on [48].
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